

СК-01 исп.3 Контроллер доступа

Оглавление

1	НАЗНАЧЕНИЕ	6
2	ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	7
3	КОНСТРУКЦИЯ ПРИБОРА	9
4	КОМПЛЕКТ ПОСТАВКИ	11
5	УСТРОЙСТВО И РАБОТА	11
	5.1. СЕТЕВОЙ (ШТАТНЫЙ) РЕЖИМ РАБОТЫ	13
	5.2. АВТОНОМНЫЙ (ОБРЫВ ЛИНИИ СВЯЗИ) РЕЖИМ РАБОТЫ	14
6	подключение	14
	6.1. Подключение питания	14
	6.2. Подключение УСК. Организация и работа ТД.	14
	6.2.1 Режимы работы ТД	15
	6.2.2 Работа ТД	16
	6.2.3 Индикация работы ТД	16
	6.3. Подключение	17
	6.4. Назначение перемычек и светодиода на плате прибора	17
7	РЕКОМЕНДАЦИИ ПО МОНТАЖУ	18
8	МАРКИРОВКА	18
9	УПАКОВКА	18
1	0 ХРАНЕНИЕ	19
1	1 ТРАНСПОРТИРОВАНИЕ	19
1		
1		
1	3 СВЕДЕНИЯ ОБ ИЗГОТОВИТЕЛЕ	19
1	4 СВЕДЕНИЯ О РЕКЛАМАЦИЯХ	19
1	5 РЕДАКЦИИ ДОКУМЕНТА	20

4 CULMA

Настоящее руководство по эксплуатации (далее РЭ) распространяется на контроллер доступа СК-01 исп.3 (далее прибор), входящий в состав интегрированной системы безопасности «Рубеж» на базе ППКОПУ «Р-08» (далее ИСБ), и предназначено для изучения его принципа работы, правильного использования, технического обслуживания и соблюдения всех мер безопасности при эксплуатации.

Данное руководство распространяется на все дальнейшие модификации СК-01 исп.3.

Внимание! Все работы, связанные с монтажом, наладкой и эксплуатацией настоящего устройства, должны осуществлять лица, имеющие допуск на обслуживание установок до 1000В, прошедшие инструктаж по технике безопасности и изучившие настоящий документ.

Внимание! При подключении прибора к БЦП, ИБП, внешним устройствам соблюдать полярность подключения контактов.

В руководстве по эксплуатации приняты следующие сокращения:

АВУ аппаратура верхнего уровня

ИБП источник бесперебойного питания

ИП идентификатор пользователя

ИУ исполнительное устройство (электромагнитный замок, тур-

никет)

БЦП блок центральный процессорный

СУ сетевое устройство – подключается к БЦП по линии связи с

интерфейсом RS-485

ТД точка доступа

ТС техническое средство

УСК устройство считывания кода, например типа УСК-02Н

ШС шлейф сигнализации

ИСБ интегрированная система безопасности

Термины и определения:

Администратор Лицо, обладающее полными правами на работу с БЦП

(управление и конфигурирование).

Область Объект охраны (помещение, комната и т.д.), включающий в

себя набор технических средств (охранные, тревожные, пожарные, технологические ШС, ИУ, точки доступа и пр.).

Идентификатор оборудования Идентификатор оборудования однозначно определяет экземпляр оборудования. В качестве идентификатора используется

тип и заводской серийный номер СУ, который указан в пас-

порте на СУ и на шильдике СУ.

Оборудование Системы безопасности – БЦП, сетевые устрой-

ства (ПУО, СКШС, ИБП и др.).

Техническое средство Объект системы безопасности, построенный на базе одного или нескольких элементов оборудования. В приборе поддерживаются следующие типы ТС: Охранный ШС, Тревожный ШС, Пожарный ШС, Технологический ШС, ИУ, Точка Доступа, Терминал, Шлюз. ТС создаются как дочерние объекты по отношению к зоне, т.е. уже на этапе создания привязыва-

ются к объекту охраны.

6 CULWA

1 Назначение

Область применения СК-01 исп.3 – контроль и управление доступом на малых и средних объектах в составе ИСБ «ИНДИГИРКА».

Прибор предназначен для контроля и управления двумя точками доступа на базе считывателей "Wiegand-26" (например УСК-02H).

Прибор используются совместно с БЦП "P-08" исп. 8 и подключаются к нему по линии связи с интерфейсом "RS-485" (сетевой режим работы). При потере (обрыве линии RS-485) связи с БЦП прибор переходит в автономный режим.

Также прибор обеспечивает:

- Использование считывателя точки доступа для постановки на охрану / снятия с охраны области.
- контроль несанкционированного вскрытия корпуса прибора.

Прибор обеспечивает совместную работу со считывателями proximity-карт УСК-02Н и УСК-02К с выходным интерфейсом "Wiegand-26", а также со считывателем proximity-карт УСК-02М с выходным интерфейсом "Wiegand-58" - производства СИГМА (рекомендуется). Совместная работа с аналогичными считывателями других производителей возможна, но не гарантируется.

В качестве блока питания рекомендуется использовать ИБП-1200/2400, ИБП-1224, ИБП-12/24 и т.п.

Прибор соответствует техническим условиям НЛВТ.425513.111 ТУ.

Электропитание прибора осуществляется от внешнего источника питания постоянного тока с напряжением (10,0 ... 28,0) В.

По степени защищенности от воздействия окружающей среды в соответствии с ГОСТ 14254-96 прибор выпускается в двух вариантах исполнения, обеспечивающих степень защиты оболочек IP20 или IP65.

Прибор является восстанавливаемым и ремонтируемым устройством.

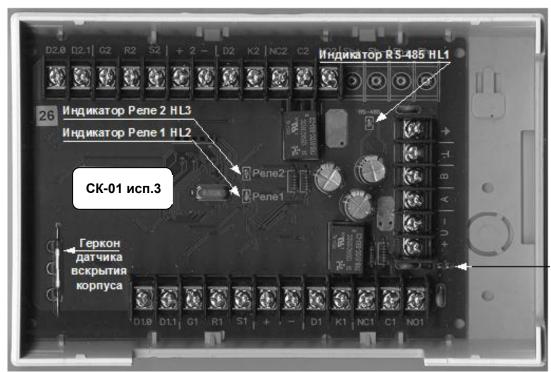


Рис. 1 Внешний вид, расположение элементов (исполнение IP20).

2 Технические характеристики

Основные технические характеристики приведены в Табл. 1.

Табл. 1 Технические характеристики СК-01 исп.3

Nº	Параметр	Значение
1	Напряжение питания постоянного тока, В:	1028
2	Время технической готовности прибора после его включения, не более, с	5
3	Максимальный ток потребления, мА, не более	300
4	Интерфейсы связи с БЦП	RS-485
5	Максимальная протяженность линии связи с БЦП по линии связи RS-485, м	1200¹
6	Линия связи RS-485	экранированная (неэкранированная) витая пара 3-5 кат. с возвратным проводом.
7	Скорость передачи данных, бит/с	9600, 19200

 $^{^{1}}$ Для увеличения длины линии связи используется БРЛ-03.

8 CULWY

8	Количество точек доступа	2
9	Количество подключаемых УСК	$2/4^2$
10	Напряжение питания УСК, В	1028
11	Интерфейс данных для подключения УСК	"Wiegand 26"
12	Количество кодов идентификатора пользователя (без пинкода), хранящихся в памяти прибора	2000
13	Количество подключаемых ИУ	2
14	Тип контактов реле управления ИУ	переключающий
15	Коммутируемое напряжение постоянного тока при токе до 1 A, B	30
16	Количество подключаемых датчиков состояния двери	2
17	Тип контактов датчика состояния двери	нормально замкнутые
18	Сопротивление соединительных проводов датчика состояния двери, Ом, не более	150
19	Количество подключаемых кнопок ручного управления ИУ (кнопка выхода)	2
20	Тип контактов кнопки ручного управления ИУ	Нормально разомкнутые
21	Ток в цепи кнопки ручного управления ИУ, мА, не более	1
22	Сопротивление проводов цепи кнопки ручного управления ИУ, Ом, не более	150
23	Степень защиты от воздействия окружающей среды	IP20, IP65
24	Диапазон рабочих температур, °С:	
	 для прибора в исполнении IP20; 	-10+50
	 для прибора в исполнении IP65 	-30+50
25	Рабочий диапазон значений относительной влажности воздуха (максимальное значение соответствует температуре +25°C, без конденсации влаги):	
	 для прибора в исполнении IP20; 	090%
	 для прибора в исполнении IP65 	093%
26	Габаритные размеры, мм:	
	- для КД2 в исполнении IP20;	165x110x32
	- для КД2 в исполнении IP65;	171x145x55

 $^{^{2}}$ Для организации двух двусторонних ТД (на вход и выход).

27	Масса, кг, не более	
	- для КД2 в исполнении IP20;	0,3
	- для КД2 в исполнении IP65;	0,4

3 Конструкция прибора

Прибор конструктивно выполнен в пластмассовом разъемном корпусе (Рис. 1) и состоит из крышки и основания корпуса. На печатной плате размещены радиоэлементы, включая: индикаторы работы, геркон датчика вскрытия корпуса, и клеммы для подключения.

Корпус прибора в зависимости от исполнения обеспечивает степень защиты IP20, IP65.

Плата устройства закреплена на основании корпуса с помощью 2 фиксаторов – в исполнении IP20 или 4-мя винтами – в исполнении IP65. Для вскрытия корпуса необходимо аккуратно освободить из защелок крышки корпуса два выступа в нижней части корпуса, после чего освободить верхнюю пару и отсоединить основание и крышку корпуса (IP20).

В случае необходимости извлечения всей платы – следует отогнуть фиксаторы платы и переместить ее вверх (IP20).

В исполнении IP65 для вскрытия корпуса и извлечения платы необходимо вывернуть соответственно 4 винта крышки и платы.

Процесс сборки устройства – производить в обратном порядке.

Для закрепления прибора на вертикальной поверхности основания корпуса предусмотрены отверстия крепления (Рис. 2, Рис. 3).

Габаритные и присоединительные размеры в вариантах исполнений IP20, IP65 показаны на Рис. 2, Рис. 3.

10 CNΓMA

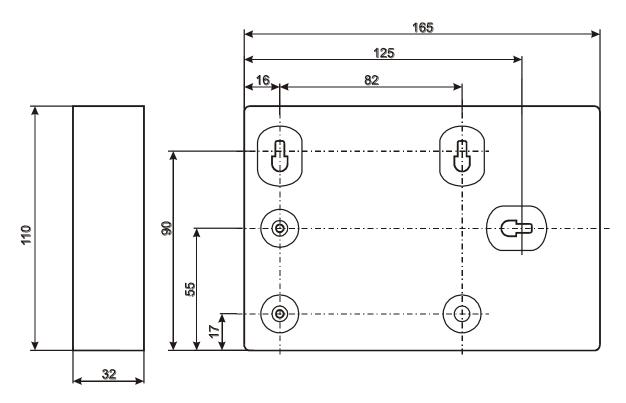


Рис. 2 Габаритные и присоединительные размеры СК-01 исп.3 (IP20)

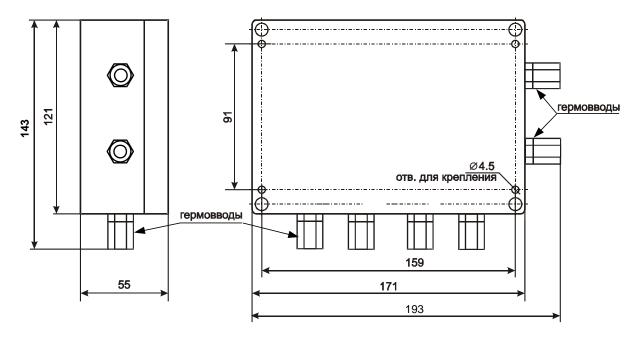


Рис. 3 Габаритные и присоединительные размеры СК-01 исп.3 (IP65)

Количество и расположение гермовводов (Рис. 3) может быть изменено.

4 Комплект поставки

№ п/п	Обозначение	Наименование	Кол.	Зав. №	Примеча- ние
1	НЛВТ.425723.009-03	Контроллер доступа СК-01 исп.3, IP20/IP65	1 шт.		
2	НЛВТ.425723.009-03 РЭ	Руководство по эксплуатации	1 экз.*		1 экз. на 5 приборов
3	НЛВТ.425723.009-03 ПС	Паспорт	1 экз.		

Примечание *) По требованию заказчика.

5 Устройство и работа

Внешний вид платы, структурная схема и назначение клемм подключения приведены соответственно на Рис. 1, Рис. 4 и Рис. 5.

На Рис. 4 приведена структурная схема прибора, которая включает в себя:

- Микроконтроллер предназначен для приема, передачи и обработки информации с устройства считывания кода и приемо-передатчика RS-485, управления реле. Используется для хранения конфигурации и кодов идентификаторов пользователей (ИП);
- Приемо-передатчик RS-485 осуществляет прием и передачу информации в линии связи с БЦП;
- Реле реле управления исполнительным устройством;
- Датчик вскрытия корпуса информация о вскрытии корпуса прибора передается в БЦП. В качестве датчика вскрытия корпуса применяются геркон или микропереключатель.

В штатном (сетевом) режиме прибор работает совместно с БЦП и подключаются к нему по линии связи с интерфейсом "RS-485". При потере (обрыве линии RS-485) связи с БЦП прибор переходит в автономный режим.

Во всех режимах работы прибора необходимо учитывать состояние датчика двери. В разомкнутом состоянии датчика (дверь открыта) на УСК мигает красный индикатор, если датчик не восстановится в течение времени открывания двери, включается звуковой сигнал и начинает мигать зеленый индикатор. Прибор переходит в дежурный режим после возвращения датчика в замкнутое состояние.

12 CULMA

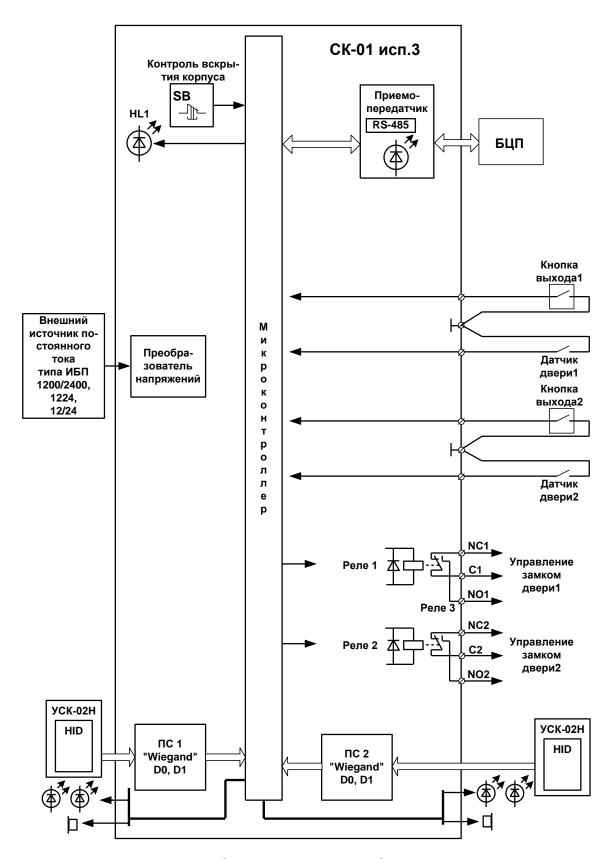


Рис. 4 Схема структурная СК-01 исп.3

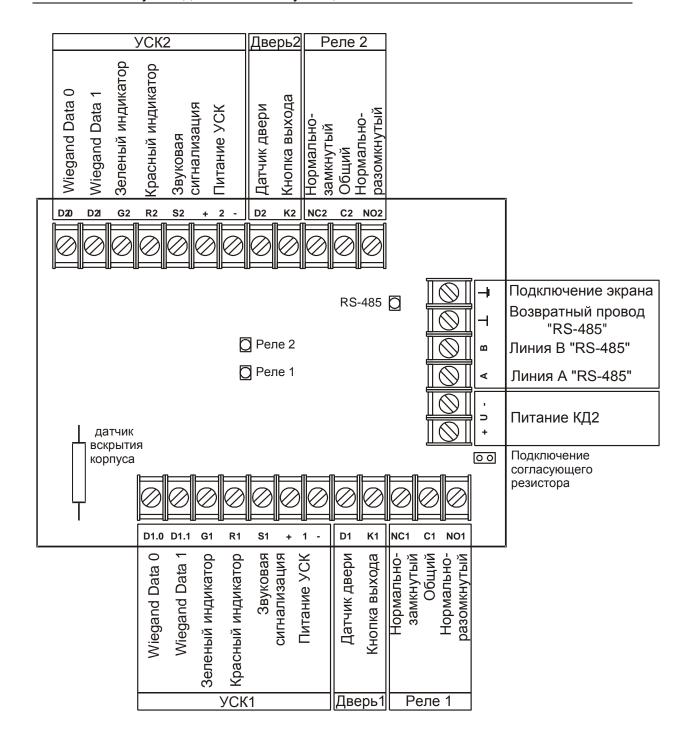


Рис. 5 Клеммы подключения СК-01 исп.3

5.1. Сетевой (штатный) режим работы

Прибор работает в сетевом режиме в составе БЦП. Сетевой режим используется для постановки на охрану, снятия с охраны или управления доступом. В этом режиме информация с УСК после соответствующего преобразования передается в БЦП, и по команде с БЦП контроллер доступа выдает сигнал управления исполнительным устройством, а также сигналы для управления звуковой и световой индикацией УСК. При нарушении связи с БЦП прибор автоматически переходит в автономный режим.

14 CNΓMA

При поступлении от БЦП сигнала на выполнение команды, на 1 с включится зеленый индикатор и прозвучит длинный звуковой сигнал. При поступлении сигнала "Ошиб-ка" прозвучит тройной звуковой сигнал и три раза на 0,5 с включится зеленый индикатор. Сигнал "Ошибка" выдается в следующих случаях:

- 1. Предъявлена неизвестная карта (набран неверный код);
- 2. У пользователя отсутствуют права на выполнение запрашиваемой операции;
- 3. Точка доступа заблокирована.

А также, дополнительно, при постановке на охрану:

Одна или несколько зон раздела находятся в состоянии отличном от "Нормы".

5.2. Автономный (обрыв линии связи) режим работы

При потере связи с БЦП прибор переходит в автономный режим работы. В автономном режиме прибор разрешает доступ на основании базы данных карт, загруженной в него от БЦП (см. Руководство по программированию).

6 Подключение

Назначения контактов (клемм) прибора показаны на Рис. 5.

6.1. Подключение питания

Подключение производить в соответствии с руководством по эксплуатации ИБП.

6.2. Подключение УСК. Организация и работа ТД.

Прибор позволяет подключить внешние считыватели proximity карт с выходным интерфейсом Wiegand и линиями управления звуковой и световой сигнализацией (УСК).

На базе прибора можно создать до 2 точек доступа (ТД), осуществляющих контроль доступа и управление постановкой / снятием с охраны помещений. Для этого к соответствующим клеммам прибора подключаются УСК, датчики открытия и замки дверей, а также кнопки выхода (см. Рис. 5). Для организации двух двусторонних ТД (на вход и выход) дополнительные УСК необходимо подключить в соответствии со схемой на Рис. 6. (Провода "Data0" и "Data1" у считывателей УСК3 и УСК4 подключаются наоборот по отношению к УСК1 и УСК2; остальные провода - параллельно.) В качестве УСК для данного вида подключения рекомендуется использовать считыватели УСК-02H.

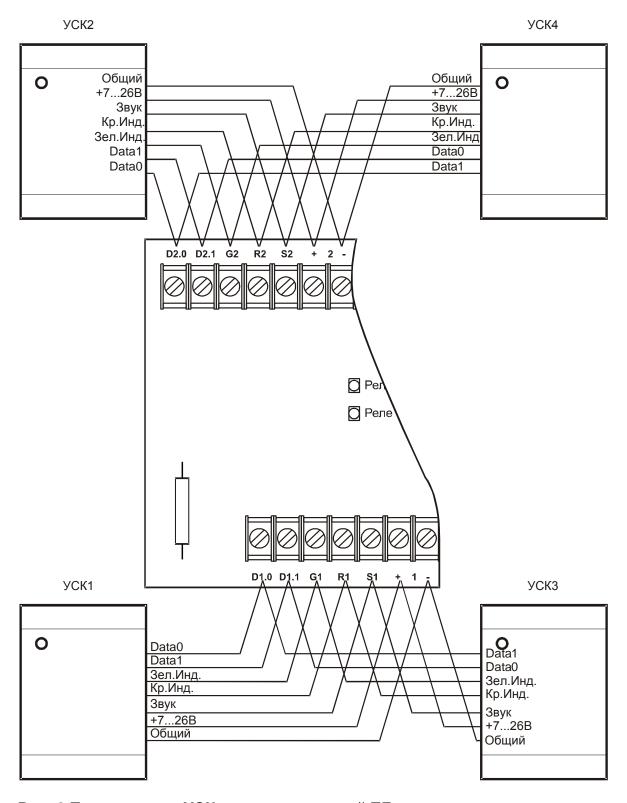


Рис. 6 Подключение УСК для двусторонней ТД

6.2.1 Режимы работы ТД

По команде с БЦП каждая ТД контроллера может работать в одном из режимов:

- дежурный режим;
- помещение на охране;

16 CULMY

- режим «ТД заблокирована» (проход запрещен);
- «ТД разблокирована» (дверь всегда открыта для прохода).

6.2.2 Работа ТД

Если ТД находится в дежурном режиме (помещение снято с охраны), то по кнопке выхода соответствующей ТД или по команде с БЦП происходит открывание двери (включается реле электромагнитного замка). Датчик открытия двери фиксирует событие открывания и передает его в БЦП. Если по истечению времени тайм-аута (задается с БЦП в пределах от 1 до 255 с) дверь не была закрыта, то в БЦП передается тревожное событие «Удержание двери». Если датчик открытия двери фиксирует событие открывания без команды с БЦП или без предварительного нажатия кнопки выхода, то в БЦП передается тревожное событие «Взлом двери».

Для постановки на охрану помещения необходимо нажать и удерживать кнопку выхода (или кнопку-индикатор на считывателе УСК-02Н) в течении 3 с до появления специальной индикации на считывателе: красный индикатор непрерывно горит, а звуковая сигнализация звучит прерывисто с частотой ~ 2 Гц. Продолжительность специальной индикации - ~ 20 с. В течении этого времени к УСК необходимо поднести Proximity-карту (Дополнительно см. Руководство по программированию).

Снятие с охраны помещения происходит автоматически при поднесении Proximityкарты.

В режиме «ТД заблокирована» проход запрещен и по нажатию кнопки выхода и по карте пользователя.

В режиме «ТД разблокирована» дверь всегда открыта.

6.2.3 Индикация работы ТД

ТД после события

«Удержание двери»

С помощью светодиодного индикатора УСК отображаются состояния ТД. Возможные варианты индикации УСК в процессе работы со КД2 приведены в Табл. 2

Индикация УСК Режим работы Дежурный режим Короткие импульсы красного индикатора с интервалом 4 с Короткие импульсы красного индикатора с интервалом 1 с Помещение на охране Частые мигания красного индикатора с интервалом 0,5 с Дверь открыта Дверь заблокирована Непрерывное свечение красного индикатора Дверь разблокирована Непрерывное свечение зеленого индикатора Частые мигания красного индикатора с интервалом 0,5 с, со-Тревожное состояние ТД после события провождаемые прерывистой звуковой сигнализацией «Взлом двери» Тревожное состояние Частые мигания попеременно красного и зеленого индика-

тора, сопровождаемые прерывистой звуковой сигнализацией

Табл. 2 Варианты индикации УСК

Задержка постановки на охрану помещения (задержка на выход)	Короткие импульсы зеленого индикатора с интервалом 1 с
Задержка на снятие с охраны помещения (задержка на вход)	Частые мигания зеленого индикатора с интервалом 0,5 с
Разрешение прохода, постановки или снятия с охраны помещения по карте пользователя	Свечение зеленого индикатора в течении 1 с, сопровождаемое непрерывной звуковой сигнализацией
Индикация тревожно- го состояния области	Частые мигания красного индикатора с интервалом 0,5 с, сопровождаемые прерывистой звуковой сигнализацией
Отказ постановки / снятия помещения с охраны или прохода по карте пользователя	Прерывистая индикация красного цвета, сопровождаемая звуковой сигнализацией в течении 1 с
Отсутствие связи с БЦП	Отсутствие какой-либо световой и звуковой сигнализации на УСК

6.3. Подключение

Прибор подключается к БЦП по линии связи RS-485 (рекомендации по прокладке линии - в соответствии с руководством по эксплуатации на БЦП).

6.4. Назначение перемычек и светодиода на плате прибора

Назначение перемычек приводится – в Табл. 3; светодиодов индикации – в Табл. 4.

Табл. 3 Назначение перемычек на плате СК-01 исп.3

Обозначение	Назначение
JP1	Подключение оконечного резистора линии связи (при установленной перемычке) — если устройство является последним СУ.

Табл. 4 Назначение светодиодов на плате СК-01 исп.3

Обозначение	Назначение
HL1 («RS-485»)	Индикация наличия связи по RS-485.
HL2	Индикация работы реле 1.

18 CUTMA

HL3	Индикация работы реле 2.	
-----	--------------------------	--

7 Рекомендации по монтажу

Монтаж прибора и всех соединительных линий производится в соответствии с настоящим документом, а также со схемами электрических подключений, приведенных в соответствующих эксплуатационных документах на блоки и устройства, входящие в состав ИСБ «Рубеж».

В качестве экранированного кабеля рекомендуется применять кабель марки КСПЭВ, неэкранированный — кабель марки КСПВ. Сечение провода в кабеле — не меньше 0,5 мм².

Подключение экранов кабелей линий связи и питания к защитному заземлению необходимо осуществлять в одной точке.

Кабеля питания и линии связи с БЦП при монтаже — пропускаются через прорезь в основании корпуса — в варианте исполнения IP20 или через соответствующие гермовводы в варианте исполнения IP65, при этом следует затянуть гайки гермовводов для обеспечения степени защиты корпуса. Максимальный диаметр кабеля, проходящего через гермоввод варианта исполнения IP65 — 7 мм.

Все работы, связанные с монтажом, наладкой и эксплуатацией настоящего устройства, должны осуществлять лица, имеющие допуск на обслуживание установок до 1000 В, прошедшие инструктаж по технике безопасности и изучившие настоящий документ.

В процессе ремонта при проверке режимов элементов не допускать соприкосновения с токонесущими элементами блоков питания, так как в линиях источников питания может присутствовать опасное напряжение. Подключение, монтаж и замена деталей прибора должны проводиться при обесточенном устройстве.

8 Маркировка

Маркировка контроллера соответствует конструкторской документации и техническим условиям HЛBT.425513.111 ТУ.

На шильдике нанесены:

- товарный знак предприятия изготовителя;
- условное обозначение устройства;
- исполнение;
- заводской номер;
- месяц и год выпуска.

Заводской номер является сетевым адресом контроллера.

9 Упаковка

Упаковка контроллера соответствует НЛВТ.425513.111 ТУ.

10 Хранение

В помещениях для хранения прибора не должно быть пыли, паров кислот, щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию.

Хранение прибора в потребительской таре должно соответствовать условиям ГОСТ 15150.

11 Транспортирование

Транспортирование упакованных приборов может производиться в любых крытых транспортных средствах. При транспортировании, перегрузке приборы должны оберегаться от ударов, толчков и воздействия влаги.

Условия транспортирования и хранения должны соответствовать ГОСТ 15150.

После транспортирования прибор перед включением должен быть выдержан в нормальных условиях в течение не менее 24 ч.

12 Гарантии изготовителя

Изготовитель гарантирует соответствие прибора требованиям технических условий при соблюдении потребителем правил транспортирования, хранения, монтажа и эксплуатации.

Гарантийный срок эксплуатации 18 месяцев со дня ввода в эксплуатацию, но не более 24 месяцев со дня отгрузки.

13 Сведения об изготовителе

```
СИГМА, 105173, г. Москва, ул. 9-мая, 126
```

тел.: (495) 542-41-70, факс: (495) 542-41-80

E-mail: общие вопросы - info@sigma-is.ru;

коммерческий отдел - sale@sigma-is.ru;

техническая поддержка - support@sigma-is.ru.

ремонт оборудования – remont@sigma-is.ru.

http://www.sigma-is.ru

14 Сведения о рекламациях

При отказе прибора в работе и обнаружении неисправностей должен быть составлен рекламационный акт о выявленных дефектах и неисправностях.

Прибор вместе с паспортом и рекламационным актом возвращается предприятию-изготовителю для ремонта или замены.

Примечание. Выход прибора из строя в результате несоблюдения правил монтажа, технического обслуживания и эксплуатации не является основанием для рекламации и бесплатного ремонта.

Внимание! Претензии без паспорта на прибор и рекламационного акта предприятие-изготовитель не принимает.

<u>20</u> СИГМА

15 Редакции документа

Редакция	Дата	Описание
4	17.10.2014	Изменены Сведения об изготовителе.