Группа компаний СИГМА

АСБ "Рубикон"

Прибор приемно-контрольный охранно-пожарный и управления "ППК-Е Рубикон"

Оглавление

1	Опис	сание и работа	8
	1.1.	Назначение	8
	1.2.	ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	11
	1.3.	Устройство	14
	1.3.1	Конструкция ППК-Е (базовый вариант)	14
	1.3.2	Управление прибором	16
	1.3.3	Индикация	16
	1.3.4	Выходы релейный и оповещателей	17
	1.3.5	Назначение клемм подключения	17
2	Комі	плект поставки и перечень совместимых устройств	20
3	Испо	льзование	25
	3.1.	Подготовка прибора к использованию	25
	3.1.1	Общие указания	25
	3.1.2	Указания мер безопасности	25
	3.2.	Размещение и монтаж	26
	3.2.1	Размещение	26
	3.2.2	Монтаж	26
	3.2.3	Подключение ППК	28
	3.2.4	Подключение ПЭВМ	29
	3.2.5	Установка внешней памяти (карта microSD)	31
	3.3.	Конфигурирование ППК	31
	3.4.	Контроль целостности проводных линий связи	31
	3.4.1	Адресный шлейф	31
	3.4.2	Выходы на оповещатели	32
4	Марн	кировка	32
5	Упак	овка	32
6	Хран	ение	33

ООО «ВИКИНГ»

7	Транспортирование	.33
8	Гарантии изготовителя	.33
9	Сведения об изготовителе	.33
10	Сведения о рекламациях	.33
	Приложение. Конструктивные особенности ППК-Е исполнение 1 (в корпусе П-12)	
12	Редакции документа	.38

Настоящее руководство по эксплуатации (далее РЭ) распространяется на прибор приемно-контрольный, охранно-пожарный и управления ППКОПиУ «ППК-Е Рубикон» (далее ППК-Е), входящий в состав адресной системы безопасности АСБ «Рубикон» (далее АСБ), и предназначено для изучения принципа их работы, правильного использования, технического обслуживания и соблюдения всех мер безопасности при эксплуатации.

Данное руководство распространяется на все дальнейшие модификации ППК-Е.

Внимание! Все работы, связанные с монтажом, наладкой и эксплуатацией настоящего устройства, должны осуществлять лица, имеющие допуск на обслуживание установок до 1000В, прошедшие инструктаж по технике безопасности и изучившие настоящий документ.

Внимание! При подключении ППК-Е к ПК, ИБП, внешним устройствам соблюдать полярность подключения контактов.

Внимание! При подключении АУ к шлейфу сигнализации соблюдать полярность подключения контактов. Не допускается попадание напряжения питания постоянного (переменного) тока, превышающее значение 40 В на клеммы АШ ППК-Е.

В руководстве по эксплуатации приняты следующие сокращения:

АМК адресный охранный магнитоконтактный извещатель

АОПИ адресный охранный пассивный ИК извещатель

АПИ адресный пожарный извещатель, включая: А2ДПИ; А2ДПИ-

кит.п.

АР адресный расширитель (безадресных ШС), включая: адрес-

ный расширитель АР5; АРмини.

АСБ адресная система безопасности «Рубикон»

АСПТ автоматической системы пожаротушения

АТИ адресно-аналоговый тепловой максимально-

дифференциальный пожарный извещатель

АУ адресное устройство

АУП автономная установка пожаротушения

АШ адресный шлейф

БИС блок индикации состояний (БИС-01, БИС-мини)

БРЛ блок ретрансляции линии (RS-485, БРЛ-03)

ИБП источник бесперебойного питания

ИК инфракрасный

ИР извещатель ручной, включая: ИР-П (пожарный); ИР-Охрана;

ИР-Пуск; ИР-Выход.

ИРС адресный охранный извещатель разбития стекла

ИСМ Исполнительный модуль, включая: ИСМ22; ИСМ220.

ИУ исполнительное устройство (электромагнитный замок, тур-

никет)

КА контроллер адресного шлейфа (КА2)

КД контроллер доступа (КД2)

МКЗ модуль (изолятора) короткого замыкания

МПТ адресный модуль выходов пожаротушения, включая:

МПТ10.

ОСЗ адресный оповещатель светозвуковой

ППД пульт пожарный диспетчерский (ППД-01)

ППК прибор приемно-контрольный «Рубикон»

ПО программное обеспечение

ПУО пульт управления объектовый (ПУО-03)

ПЭВМ персональная электронно-вычислительная машина

СКИУ сетевой контроллер исполнительных устройств (СКИУ-01,

СКИУ-02)

СКШС сетевой контроллер шлейфа сигнализации (СКШС-01,

СКШС-02, СКШС-04)

СУ сетевое устройство – подключается к ППК по линии связи с

интерфейсом RS-485 (КД2, КА2, БИС-Р и др.)

ТС техническое средство ШС шлейф сигнализации

Термины и определения:

Администратор Пользователь обладающий полномочиями конфигурировать

ППК. Ему можно только изменить пароль. Его нельзя удалить

или добавить какие либо идентификаторы.

Идентификатор оборудования Идентификатор оборудования однозначно определяет экземпляр оборудования. В качестве идентификатора используется тип и заводской серийный номер СУ, который указан в пас-

порте на СУ и на шильдике СУ.

Область - группа технических средств объединенных по неко-

торому признаку. Как правило, области сопоставляется конкретная территория – комната, этаж, здание. Области могут

образовывать иерархические структуры.

В дежурном режиме управление системой безопасности осу-

ществляется оператором через области.

Оборудование Системы безопасности – ППК, сетевые устрой-

ства (КА2, КД2, СКШС и др.).

Пользователи Набор учетных записей идентификаторов (карточки, пин-

коды и т д) для прохода через точку доступа, входа в области, взятия, снятия под охрану и работы с ППК, которым можно назначить различные идентификаторы (пин-код, проксимити

карту, iButton), а также до 8ми уровней доступа

Техническое средство TC (техническое средство) — элемент (его часть или группа элементов) оборудования (адресного или сетевого устройства), сконфигурированный в области в соответствии с принци-

пом его работы.

В приборе поддерживаются следующие типы ТС: охранный извещатель, пожарный извещатель, ручной пожарный извещатель, релейные выходы исполнительных устройств (в дальнейшем – ИУ), направление пожаротушения АСПТ, устройство считывания кодов-идентификаторов пользователей для

точки доступа и т.п.

8 OOO «BUKUHL»

1 Описание и работа

1.1. Назначение

Прибор приемно-контрольный, охранно-пожарный и управления ППКОПиУ "ППК-Е Рубикон" в составе адресной системы безопасности (АСБ «Рубикон») предназначен для организации охранной, пожарной сигнализации, организации доступа, контроля технологических параметров, защищаемых от несанкционированного проникновения объектов, пожаров, техногенных/технологических факторов объектов различных форм собственности, передачи извещений, сбора, обработки информации о состоянии объектов и выработки управляющих сигналов на включение систем (устройств) оповещения, доступа, систем дымоудаления, вентиляции, управления пожаротушением, управления технологическим и другим инженерным оборудованием в автоматическом и/или ручном режиме (см. Рис. 1).

ППК-Е по линии связи с интерфейсом "RS-485" позволяет подключать как СУ из состава АСБ «Рубикон», включая:

- КА-2; БИС-Р; ПУО-03р; КД2; КР Ладога; ТИ,

так и СУ из состава ППКОПУи В 01059-1000-3 «Р-08» (НЛВТ.425513.111 ТУ), включая:

- БИС-01; ППД-01; СКИУ-01; СКИУ-02; СКШС-01; СКШС-02; СКШС-04, ПУО-03; ПУО-03АВ; СКУП-01; ППО-01; СКЛБ-01; ИБП-1224; ИБП-1200/ИБП-2400 1 .

а также ПЭВМ, с установленным ПО "RM-3", например через преобразователи интерфейсов "RS-485/USB". Подробно перечень устройств приведен в п.2 Комплект поставки.

Для увеличения протяженности линии связи интерфейса "RS-485" применяется блок ретранслятора линейный (далее БРЛ-03) из состава прибора ППКОПУиВ 01059-1000-3 «P-08».

ППК-Е содержит интерфейс "Ethernet", позволяющий интегрировать прибор в локальную сеть(связь с ПЭВМ), а также интерфейс "RS-232" для использования модема или принтера.

В ППК-Е предусмотрена возможность подключения внешней памяти (карта памяти microSD).

ППК-Е позволяет подключить одну точку доступа, включая устройство считывания кода типа УСК, геркон датчика двери и кнопку выхода.

В качестве адресного шлейфа (далее АШ) используется двухпроводной шлейф кольцевой структуры. Возможно применение вместо шлейфа кольцевой структуры – двух незамкнутых шлейфов (два "луча").

В состав АСБ «Рубикон» входят следующие АУ, подключаемые в адресный шлейф ППК:

- пожарные извещатели А2ДПИ, АТИ;
- охранные извещатели АОПИ, ИРС, АМК;

¹ Указанные ИБП поддерживаются по линии связи RS-485 – изготовленные с ноября 2014 г.

- адресный вибрационный извещатель АВИ;
- извещатели ручные ИР-П (пожарный), ИР-Охрана, ИР-Пуск;
- оповещатель ОСЗ;
- исполнительные модули ИСМ22; ИСМ220; ИСМ22 исп.1; ИСМ22 исп.2; ИСМ220-исп.4;
- адресные расширители (безадресных ШС) АР5, АРмини, АР1;
- модули пожаротушения МПТ10;
- модуль (изолятора) короткого замыкания.

Полный перечень АУ, подключаемых к ППК, содержится в п.2 Комплект поставки (указанный перечень может дополняться новыми АУ).

ППК-Е производится в двух вариантах исполнения – базовый вариант (в пластиковом корпусе) и вариант исп. 1 (в корпусе ИБП-12).

Конструктивные особенности ППК-Е исп. 1 приведены в Приложение. Конструктивные особенности ППК-Е исполнение 1 (в корпусе ИБП-12).

Электропитание ППК-Е (базовый вариант) осуществляется от внешнего источника питания постоянного тока с напряжением (9,0 ... 28,0) В.

В качестве источника питания постоянного тока можно использовать источники типа ИБП-1200/2400 (источник бесперебойного питания, далее ИБП, НЛВТ.425513.003); типа ИБП-1224 (НЛВТ.425513.203); типа ИБП-12/24 (НЛВТ.425513.004). Указанные ИБП запитываются от однофазной сети переменного тока частотой 50 Γ ц и напряжением (220 $^{+22}_{-33}$) В.

Электропитание ППК-Е (исп. 1) осуществляется от однофазной сети переменного тока частотой 50 Γ ц и напряжением (220^{+22}_{-33}) B.

ППК имеет в своем составе релейный выход для подачи сигнала управления автоматикой, два выхода для включения светового и звукового оповещателей (с контролем "КЗ" и "обрыва" линии).

По требованиям электромагнитной совместимости ППК соответствует нормам ГОСТ Р 53325-2009. Степень жесткости – не выше 2-й.

ППК является восстанавливаемым и ремонтируемым устройством.

По степени защищенности от воздействия окружающей среды в соответствии с ГОСТ 14254-96 ППК-Е обеспечивает степень защиты оболочки IP20.

ППК соответствует техническим условиям ТУ 4372-002-72919476-2014.

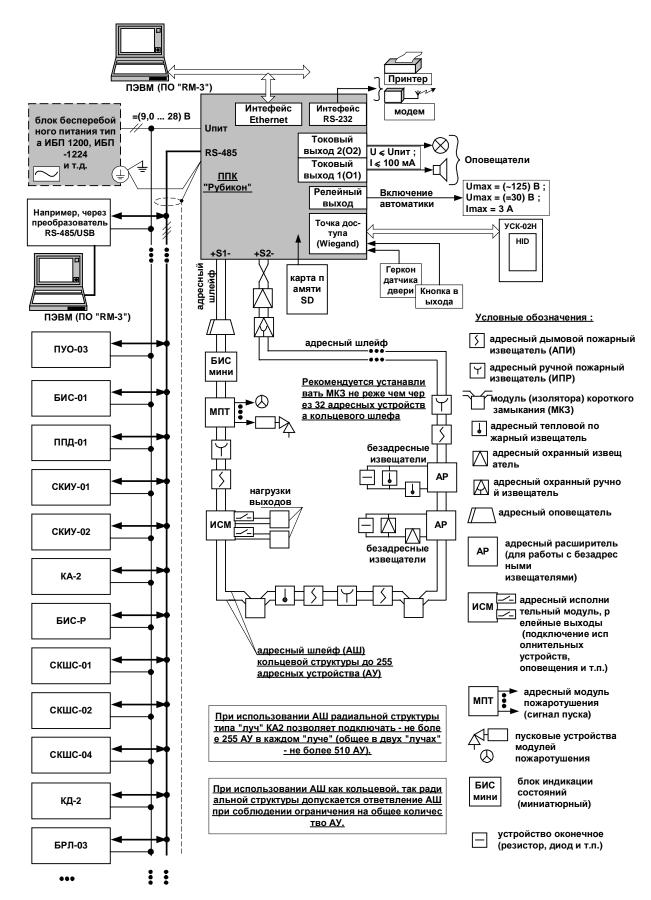


Рис. 1 Использование (подключение) ППК в составе АСБ «Рубикон» (показан базовый вариант, питание от внешнего источника)

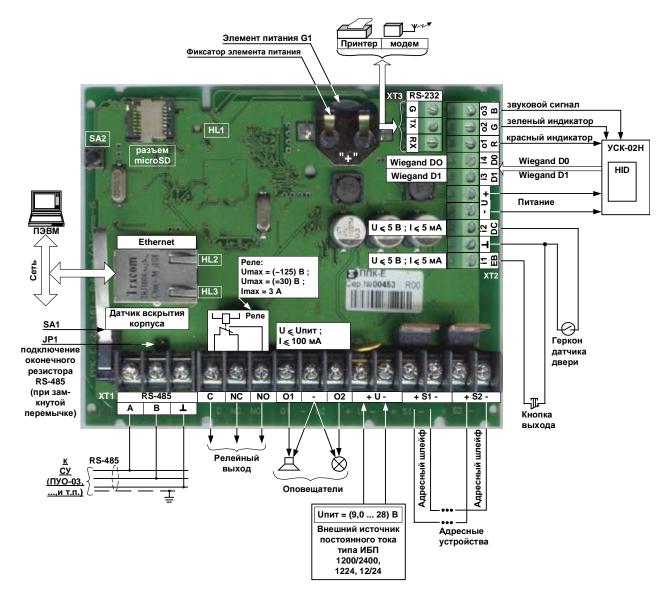


Рис. 2 Внешний вид, расположение элементов, подключение (базовый вариант, питание от внешнего источника).

1.2. Технические характеристики

Основные технические характеристики приведены в Табл. 1.

Табл. 1 Технические характеристики ППК-Е

Nº	Параметр	Значение
1	Напряжение питания:	
	- ППК-Е (базовый вариант), постоянного тока, В	9,028

	- ППК-Е (исп. 1), переменного тока частотой 50 Гц, В	187 242
2	Время технической готовности ППК после его включения без учета времени готовности АУ, не более, с	5/30 ¹
3	Максимальный ток потребления (при напряжении питания 12 В), мА, не более, включая:	
	- в дежурном режиме при 255 АУ	220
	- в режиме тревожного извещения (сработка оповещателей)	900
4	Интерфейсы связи с СУ	RS-485
5	Максимальная протяженность линии связи с СУ по линии связи RS-485, м	1200 ²
6	Линия связи RS-485	экранированная (неэкранированная) витая пара с воз- вратным проводом.
7	Скорость передачи данных, бит/с	9600, 19200
8	Общее количество устройств на линии связи RS-485, не более	31
9	Общее количество устройств KA2, подключаемых к линии связи RS-485, не более	2
10	Структура адресного шлейфа	"кольцевая" ³ ("ра- диальная" – два "луча")
11	Максимальное количество адресных устройств в "кольцевом" шлейфе	255
12	Длина "кольцевого" шлейфа, м	0 3000 ⁴
13	Максимальное количество адресных устройств в "радиальном" шлейфе	510 (по 255 в каж- дом "луче"
14	Максимальное потребление устройств адресного шлейфа (оба луча, максимум, в режиме оповещения), мА	140

 $^{^1}$ Время технической готовности прибора к работе состоит из времени готовности ППК (KA2), и времени готовности устройств на адресном шлейфе. Время готовности устройств на адресном шлейфе не превышает 100+N*10+M*50 в секундах ; где N=количество МК3, а M=количество АУ со встроенным МК3 (например, ИР2, АР5).

 $^{^{2}}$ Для увеличения длины линии связи используется БРЛ-03.

³ Рекомендуемая

⁴ Для более точного расчета длины – необходимо воспользоваться калькулятором "Rubicalc".

15	Максимальное потребление устройств адресного шлейфа (каждый луч по отдельности или кольцо в целом):	
	 в дежурном режиме (20 B, 40 мА); 	30
	- в дежурном режиме (20 В, 100 мА);	80
	- в режиме выдачи тревожного извещения (оповещения)	80
16	Интерфейсы связи с ПЭВМ	RS-485 или Ethernet
17	Протокол связи по Ethernet	TCP/IP
18	Скорость передачи данных интерфейса Ethernet, Мбит/сек	10/100
19	Интерфейс связи с принтером или модемом	
	(используемые сигналы Тх, Rx, GND)	RS-232
20	Протяженность ЛС интерфейса RS-232, не более, м.	15
21	Количество релейных выходов	1
22	Тип контактов релейного выхода	переключающий
23	Максимальное напряжение, коммутируемое релейным выходом, В:	
	- постоянного тока;	30
	- переменного тока;	125
24	Максимальный ток, коммутируемый релейным выходом, А:	
	- при активной (резистивной) нагрузке;	3
	- при индуктивной нагрузке (L/R=7msec).	0,3
25	Количество токовых выходов (линии оповещателей)	2
26	Контроль токовых выходов линий подключения оповещателей	На обрыв и короткое замыка- ние
27	Напряжение токового выхода при поступлении тревожного извещения, В (зависит от напряжения питания)	(9,028)
28	Ток ограничения токового выхода, мА	100
29	Максимальное напряжение токового выхода при отсутствии тревожного извещения, В	0,01
30	Общее количество линий подключения устройств считывания кода (типа УСК) с интерфейсом "Wiegand".	1
31	Характеристики входных сигналов геркона датчика двери и кнопки выхода:	

14 ООО «ВИКИНГ»

	- максимальное напряжение, В, не более;	3,3
	- максимальный ток, мА, не более/	1
32	Суммарное количество ТС, не более	1600
33	Максимальное количество областей, не более	128
34	Максимальное количество ТС в одной области	256
35	Максимальное количество идентификаторов пользователей, не более	5000
36	Тип внешней памяти	карта памяти mi- croSD
37	Тип файловой системы внешней памяти	FAT16, FAT32
38	Емкость памяти карты microSD	от 16Мб до 16Гб (включительно)
39	Диапазон рабочих температур, °С	+5+55
40	Рабочий диапазон значений относительной влажности воздуха (максимальное значение соответствует температуре +25°C, без конденсации влаги)	093%
41	Габаритные размеры, мм:	
	- ППК-Е (базовый вариант);	165 x 110 x 32
	- ППК-Е (исп. 1).	254 x 245 x 80
42	Масса, кг, не более	
	- ППК-Е (базовый вариант);	0,35
	- ППК-Е (исп. 1), без аккумуляторных батарей.	3,5

1.3. Устройство

ППК-Е (см. Рис. 2) в своем составе содержит приемопередатчик линии связи RS-485; элементы схемы интерфейсов RS-232 и Ethernet; радиоэлементы, обеспечивающие работу АШ; релейный выход для подачи сигнала управления автоматикой, два выхода для включения светового и звукового оповещателей (с контролем "КЗ" и "обрыва" линии). В ППК предусмотрен датчик вскрытия корпуса и клеммы подключения. ППК позволяет подключить одну точку доступа на базе устройства типа УСК с интерфейсом Wiegand и содержит клеммы подключения входных сигналов геркона датчика двери и кнопки выхода.

1.3.1 Конструкция ППК-Е (базовый вариант)

ППК-Е конструктивно выполнен в пластмассовом разъемном корпусе (см. Рис. 2, Рис. 3) и состоит из крышки и основания корпуса . Корпус ППК обеспечивает степень защиты IP20 в соответствии с ГОСТ 14254-96.

Плата устройства закреплена на основании корпуса с помощью 2 фиксаторов. Для вскрытия корпуса ППК-Е необходимо аккуратно освободить из защелок крышки корпуса два выступа в нижней части корпуса, после чего освободить верхнюю пару и отсоединить основание и крышку корпуса.

В случае необходимости извлечения всей платы – следует отогнуть фиксаторы платы и переместить ее вверх.

Для закрепления ППК-Е на вертикальной поверхности основания корпуса предусмотрены отверстия крепления (Рис. 3).

Габаритные и присоединительные размеры в вариантах исполнений IP20, IP65 показаны на Рис. 3

В качестве сменной батареи часов используется литиевая батарея типа CR2032 напряжением 3 В.

На плате располагаются индикатор HL1(RS-485), перемычка JP1 согласующего сопротивления (необходимо замкнуть если устройство является последним на линии RS-485).

Для индикации режимов передачи данных по интерфейсу Ethernet в торце разъема размещены два индикатора HL2 и HL3.

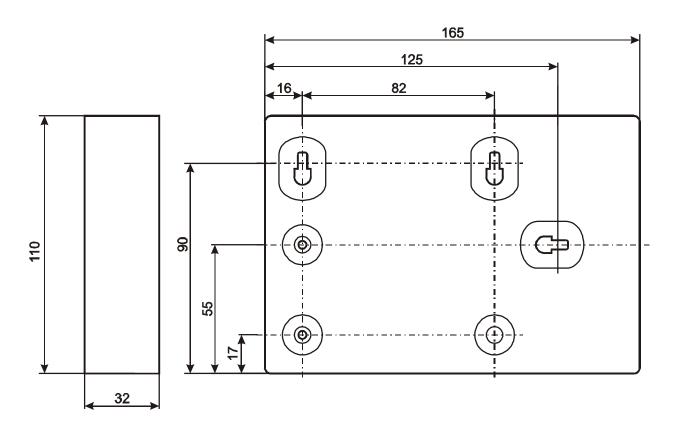


Рис. 3 Габаритные и присоединительные размеры.

1.3.2 Управление прибором

В процессе эксплуатации может возникнуть необходимость в подаче команд постановки/снятия с охраны, сброса, инициации управления устройствами и режимами работы системы. ППК-Е не имеет собственных органов управления, но может управляться с помощью подключенных к нему компьютера, пульта объектового ПУО-03Р, считывателя (подключенного непосредственно или посредством КД2 или AP5), а также посредством сухих контактов или иных сенсоров или клавиш (подключенных непосредственно или посредством соответствующих периферийных устройств, например, AP-мини, ИР-Пуск, ППД, и т.д.).

Кроме того конфигурировать, управлять и наблюдать состояние системы можно через WEB интерфейс, для этого необходимо в адресной строке браузера ввести IP адрес ППК-Е.

Индикация функционального состояния системы, построенной на основе ППК-Е осуществляется на подключенных к нему внешних устройствах — оповещателях, индикаторных панелях (например, БИС-Р), а также пульте ПУО-03Р, или на компьютере.

Функциональность прибора описывается посредством логической структуры областей, их параметров и состава. Более подробно работа и настройка прибора, а также возможные способы применения дополнительных устройств описаны в документе «Руководство по программированию ППК Рубикон».

1.3.3 Индикация.

Для визуальной индикации режимов работы служат светодиодные индикаторы HL1 (на плате ППК-Е, см. Рис. 2), HL2 и HL3 – расположены в торце разъема "Ethernet" (см. Рис. 2). Индикация приведена в Табл. 2.

Табл. 2 Индикации прибора (HL1, HL2, HL3)

Режимы свечения.	Описание			
<u>HL1</u> (на плате, RS-485)				
Прерывистое свечение (красный цвет) Передача данных по линии связи RS-485				
Постоянное свечение	Подача напряжения питания			
<u>HL2</u> (разъем RJ-45 - Ethernet)				
Постоянное свечение (зеленый цвет) Режим передачи данных Ethernet со скоростью 100 Мб. в сек.				
Прерывистое свечение (зеленый цвет) Передача данных Ethernet				
<u>HL3</u> (разъем RJ-45 - Ethernet)				

Постоянное свечение (желтый цвет)	Режим передачи данных Ethernet со скоростью 10 Мбит в сек.
Прерывистое свечение (желтый цвет)	Передача данных Ethernet

1.3.4 Выходы релейный и оповещателей.

В приборе реализованы следующие выходы:

- Релейный выход с переключающимися контактами (ограничения по напряжению и току см. Табл. 1 Технические характеристики), включая:
 - состояние "**выключен**" замыкание контактов "C NC";
 - состояние "**включен**" замыкание контактов "C NO".
- Два токовых выхода сигналов оповещателей. Ток выходов ограничен ~ 100 мА. Выходное напряжение определяется напряжением питания Uвых ≤ Uпит. Различаются состояния токовых выходов:
 - состояние "выключен" Uвых ≤ 0,01 В;
 - состояние "включен" Uвых ≤ Uпит.

Указанные выходы могут быть сконфигурированы как на выдачу конкретного тревожного извещения (состояния области), так и как "Универсальный выход".

При поступлении тревожного извещения выход переходит из состояния "выключен" в состояние "включен".

Для изменения состояния выхода при конфигурировании может быть задан признак "инвертирован" – тогда выход будет переходить из состояния "включен" в состояние "выключен".

Более подробно – см. "ППК Рубикон. Руководство по программированию", "ППК Рубикон. Руководство пользователя".

1.3.5 Назначение клемм подключения.

Назначение клемм, перемычки ЈР1 приведены в Табл. 3.

Табл. 3 Назначение клемм подключения, перемычки ЈР1.

Обозначение Назначение					
	Клеммы подключения XT1				
A	Линия связи «А» RS-485.				
В	Линия связи «В» RS-485.				
上	Общий(возвратный) провод линии связи RS-485.				
С	Общий контакт релейного выхода.				
NC	Нормально-замкнутый контакт релейного выхода.				

NO	Нормально-разомкнутый контакт релейного выхода.	
O1	«+» клемма токового выхода 1 (подключение оповещателей).	
-	«-» клемма (общая) токовых выходов 1 и 2 (подключение оповещателей). Клемма G предназначена только для подключения «-» оповещателей.	
O2	«+» клемма токового выхода 2 (подключение оповещателей).	
+ U	Подключение «+U» питания прибора от внешнего источника питания постоянного тока, U пит = $(9,028)$ В.	
U	Подключение «0В» питания прибора от внешнего источника питания постоянного тока, Uпит = (9,028) В.	
+ S1	«+» клемма адресного шлейфа 1-го луча.	
S1 -	«-» клемма адресного шлейфа 1-го луча.	
+ S2	«+» клемма адресного шлейфа 2-го луча.	
S2 -	«-» клемма адресного шлейфа 2-го луча.	
	Клеммы подключения XT2	
i1 (EB)	«+» клемма подключения входного сигнала "кнопка выхода"	
	Вход 1	
上	«-» клемма (общая) подключения входных сигналов "кнопка выхода" и "датчик двери"	
il (DC)	«+» клемма подключения входного сигнала " датчик двери " Вход 2	
- V	«-» клемма подачи напряжения питания постоянного тока на внешнее устройство типа УСК. Соответствует напряжению питания Uпит = (9,028).	
V +	«+» клемма подачи напряжения питания постоянного тока на внешнее устройство типа УСК. Соответствует напряжению питания Uпит = (9,028).	
i3 (D1)	Данные D1 интерфейса Wiegand	
	Вход 3	
i4 (D0)	Данные D0 интерфейса Wiegand	
	Вход 4	
o1 (R)	"+" сигнала включения красного индикатора УСК	
	Выход 1 (открытый коллектор)	
o2 (G)	"+" сигнала включения зеленого индикатора УСК	
	Выход 2 (открытый коллектор)	

o3 (S)	"+" включения звукового сигнала УСК				
Выход 3 (открытый коллектор)					
	Клеммы подключения XT3				
上	«-» (цифровая "земля") сигнала RS-232				
TX	Передаваемые данные сигнала RS-232				
RX	Принимаемые данные сигнала RS-232				
Перемычка ЈР1					
JP1	Подключение оконечного резистора линии связи RS-485 (при установленной перемычке), если устройство является последним в линии связи.				

2 Комплект поставки и перечень совместимых устройств.

В комплект поставки прибора приемно-контрольного, охранно-пожарного и управления ППКОПиУ «ППК-Е Рубикон» входят: ППК-Е (см. Табл. 4), СУ из состава АСБ «Рубикон», включая ПЭВМ(см. Табл. 5); АУ из состава АСБ «Рубикон»(см. Табл. 6).

Дополнительно в комплект поставки могут входить СУ из состава приборов ППКО-ПУи В 01059-1000-3 «P-08», ППКОП 01059-100-4 «P-060» и ППКОП 01059-250-1 «P-07-3», подключаемых к ППК-Е по линии связи с интерфейсом "RS-485"(см. Табл. 7), включая: БИС-01; ППД-01; СКИУ-01; СКИУ-02; СКШС-01 (для ППК); СКШС-02 (для ППК); СКШС-04 (для ППК).

Табл. 4 Комплект поставки ППК-Е

No	Обозначение	Наименование	Кол-	Зав.	Примечание
п/п			ВО	№	
1	САКИ.425513.204 САКИ.425513.204-01	Прибор приемно- контрольный ППК-Е, включая ППК-Е исп. 1	1 шт.		
			1		II DVD
2	САКИ.425513.204 РЭ	Руководство по экс- плуатации ППК-Е	1 шт.*		Ha DVD (CD) диске
3	САКИ.425513.204 ПС	Паспорт ППК-Е	1 шт.		
4		DVD (CD) диск с технической документацие и ПО.	1 шт.		
5		Соединительные про-	1		для ППК-Е
		вода для подключения	ком-		исп. 1
		батареи аккумулятор- ной (БА)	плект		
6		вставка плавкая 5х20 (6,3 A)	1		для ППК-Е исп. 1
7		вставка плавкая на 4 А	1		для ППК-Е исп. 1

Примечание *) По требованию заказчика. Техническая документация и РЭ содержатся на DVD (CD) диске.

Табл. 5 СУ (RS-485) из состава АСБ

No	Обозначение	Наименование	Краткое описание
п/п			

1	САКИ.425641.110 САКИ.425641.110- 01	Сетевой контроллер адресного шлейфа KA2, KA2 исп.1	Контроллер двухпроводного адресного шлейфа, аналогичного тому что встроен в ППК. К кольцевому адресному шлейфу КА2 можно подключить до 255 адресных устройств или 510 если вместо кольца используется 2 луча. На самом КА2 кроме адресного шлейфа присутствуют 1 реле и 2 выхода с контролем линии связи (100ма).
2	САКИ.425723.009 САКИ.425723.009- 01	Сетевой контроллер доступа. КД2, КД2 исп. 1	Две точки доступа. Каждая из двух точек доступа может быть как двусторонней (два УСК) так и односторонней (УСК и кнопка выхода).
3	САКИ.425548.002	Блок индика- ции состояний БИС-Р	Предназначен для отображения на встроенном светодиодном табло (64 двухцветных индикатора) состояния объектов (области) систем охранной и пожарной безопасности.
4	САКИ.422412.003	Пульт управ- ления объекто- вый ПУО-03р	Пульт предназначен для организации терминалов управления объектами ТС (охранными ШС, пожарными ШС и т.д.).
5	САКИ.468157.018	Контроллер интерфейсный КР Ладога	Предназначен для обеспечения работы с извещателями "Ладога" производства ЗАО "РИЭЛТА".
6	САКИ.425655.001	Преобразова- тель интерфей- са ТИ	Предназначен для обеспечения передачи извещений на телефонный ПЦН типа "ADEMCO 685" и т.п.
7		ПЭВМ	Компьютер с программным обеспечением верхнего уровня "RM-3". Обычно подключается через преобразователи USB↔RS-485 или RS-232↔RS-485. Возможно подключение через интерфейс Ethernet.

Табл. 6 АУ (АШ) из состава АСБ

No	Обозначение	Наименование	Назначение, описание
п/п			
1	САКИ.425232.003	А2ДПИ	Адресно-аналоговый дымовой оптико- электронный пожарный извещатель. Формирует сигнал тревожного извеще- ния при превышении значения задым- ленности выше установленного порога. Имеет настройку чувствительности.

<u>22</u> OOO «ВИКИНГ»

2	САКИ.425232.004	А2ДПИ-м	Адресно-аналоговый дымовой оптико- электронный пожарный извещатель.
3	САКИ.425214.001	АТИ	Адресно-аналоговый тепловой макси- мально-дифференциальный пожарный извещатель.
4	САКИ.425211.001 (САКИ.425211.003, САКИ.425211.004)	ИР-П	Адресный ручной пожарный извещатель. Предназначен для формирования тревожного извещения путем нажатия на кнопку. Возможны варианты исполнения ИР-Охрана, ИР-Пуск - соответственно охранный, аварийный выход, пуск порошка.
5	САКИ.426475.006	МК3	Модуль (изолятора) короткого замыкания. Предназначен для автоматического отключения участка адресного кольцевого ШС, в состоянии короткого замыкания и расположенного между двумя модулями.
6	САКИ.425641.108	AP5	Адресный расширитель на 5-ть шлейфов. Предназначен для подключения безадресных пожарных и охранных извещателей как с нормально-замкнутыми, так и нормально разомкнутыми контактами. Возможно подключение считывателя типа "Touch Memory" для постановки/снятия на охрану.
7	САКИ.425641.109 САКИ.425641.156 САКИ.425641.111	Адресный рас- ширитель ми- ниатюрный в исполнениях: АРмини, АР- мини-П, АР1	Адресный расширитель миниатюрный на 2-а шлейфа. Предназначен для подключения безадресных пожарных и охранных извещателей как с нормальнозамкнутыми, так и нормально разомкнутыми контактами. Благодаря миниатюрным габаритам может применяться в качестве адресной метки.
8	САКИ.425533.119 САКИ.425533.119- 01	Исполнительный модуль в исполнениях: ИСМ22 исп1, ИСМ22 исп2	Исполнительный модуль. Предназначен для управления двумя исполнительными устройствами (два релейных выхода с переключающими контактами), например, световыми и звуковыми оповещателями и т.п.

9	САКИ.425533.118 САКИ.425533.118- 04	Исполнительный модуль в исполнениях: ИСМ220, ИСМ220 исп4	Исполнительный модуль. Предназначен для управления одним исполнительным устройством (выход 220В), например, клапанами дымоудаления и т.п.
10	САКИ.425152.001 САКИ.425152.001- 01	АОПИ, включая исполнение АОПИ-Штора	Адресный охранный пассивный ИК извещатель. Контролирует изменения теплового излучения от движущихся тел. Имеет настройку чувствительности.
11	САКИ.425113.001	AMK	Адресный охранный магнитоконтактный извещатель. Предназначен для блокировки дверных и оконных проемов.
12	САКИ.425132.004	ИРС	Адресный охранный извещатель разбития стекла. Имеет настройку чувствительности.
13	САКИ.425641.115	АВИ	Адресный охранный извещатель вибра- ционный.
14	САКИ.425533.116	МПТ10	Адресный модуль выходов пожаротушения на 10 направлений. Предназначен для контроля цепей управления пуском установок автоматического пожаротушения(УАПТ); формирования и выдачи импульса пуска УАПТ, подключения оповещателей. Используется в составе АСПТ.
15	САКИ.425548.003	OC3	Адресный оповещатель светозвуковой. Предназначен для светового и звукового оповещения о состоянии охраняемого объекта.

Табл. 7 СУ (RS-485) из состава приборов «P-08», «P-060»

№ п/п	Обозначение	Наименование	Краткое описание
1	САКИ.425548.001	Блок индика- ции состояний БИС-01	Предназначен для отображения на встроенном светодиодном табло (64 двухцветных индикаьора) состояния объектов (областей) систем охранной и пожарной безопасности.
2	САКИ.422412.114	Пульт пожар- ный диспет- черский ППД- 01.	Предназначен для использования в составе АСПТ для отображения состояния до 8-ми направлений пожаротушения

3	САКИ.425533.109	Сетевой контроллер управления пожаротушением СКУП-01	Предназначен для контроля цепей управления пуском установок автоматического пожаротушения(УАПТ) и выдачу импульса пуска УАПТ.
4	НЛВТ.422412.113	Пульт пожар- ный объекто- вый ППО-01	Предназначен для обеспечения управления и индикации состояния автоматической системы пожаротушения.
5	НЛВТ.425661.111	Контроллер сетевой СКЛБ- 01	Предназначен для обеспечения приема информации с блоков линейных ЛБ-06 и ЛБ-07.
6	НЛВТ.425513.020 3	Источник бесперебойного питания ИБП-1224	Предназначен для обеспечения напряжением постоянного тока технических устройств систем охранно-пожарной сигнализации, аппаратуры управления установок пожаротушения и инженерного оборудования.
7	НЛВТ.425513.003	Источник бесперебойного питания ИБП-1200/ИБП-2400	Предназначен для обеспечения напряжением постоянного тока технических устройств систем охранно-пожарной сигнализации и инженерного оборудования.
8	НЛВТ.422412.002	Пульт управ- ления объекто- вый ПУО-03	Предназначен для организации терминалов управления объектами ТС (охранными ШС, пожарными ШС и т.д.).
9	НЛВТ.422412.002	Пульт управ- ления объекто- вый ПУО- 03AB	Предназначен для организации терминалов управления объектами ТС (охранными ШС, пожарными ШС и т.д.).
10	НЛВТ.425533.108	Сетевой контроллер исполнительных устройств СКИУ-01	Предназначен для управления четырьмя ИУ (релейными выходами).
11	НЛВТ.425533.110	Сетевой контроллер исполнительных устройств СКИУ-02;	Предназначен для управления четырьмя ИУ (релейными выходами). Есть контроль линий связи с ИУ на обрыв и короткое замыкание.
12	НЛВТ.425641.104	Сетевой контроллер шлейфов сигнализации СКШС-01	Предназначен для контроля четырех универсальных (безадресных) ШС (пожарные извещатели). Есть контроль ШС на обрыв и короткое замыкание.

13	НЛВТ.425641.105	Сетевой контроллер шлейфов сигнализации СКШС-02	Предназначен для контроля восьми охранных (безадресных) ШС (охранные извещатели). Есть контроль ШС на обрыв и короткое замыкание.
14	НЛВТ.425641.155	Сетевой контроллер (безадресных) шлейфов сигнализации СКШС-04	Предназначен для контроля шестнадцати охранных (безадресных) ШС (охранные извещатели). Есть контроль ШС на короткое замыкание.
15	НЛВТ.425661.112	Блок ретранслятора линейный БРЛ-03.	Для увеличения протяженности линии связи с интерфейсом "RS-485".
16	НЛВТ.426475.001 НЛВТ.426475.002 НЛВТ.426475.003	Блок защиты линии БЗЛ-01, БЗЛ- 02, БЗЛ-03,	Для защиты от перенапряжений линии связи с интерфейсом "RS-485", цепей источников вторичного питания.
	НЛВТ.426475.004	БЗЛ-04	

3 Использование

3.1. Подготовка прибора к использованию

3.1.1 Общие указания

После длительного хранения прибора следует произвести внешний осмотр.

При внешнем осмотре необходимо проверить:

- отсутствие видимых механических повреждений;
- чистоту гнезд, разъемов и клемм;
- состояние соединительных проводов и кабелей.

3.1.2 Указания мер безопасности

Все работы, связанные с монтажом, наладкой и эксплуатацией настоящего устройства, должны осуществлять лица, имеющие допуск на обслуживание установок до 1000 В, прошедшие инструктаж по технике безопасности и изучившие настоящий документ.

В процессе ремонта при проверке режимов элементов не допускать соприкосновения с токонесущими элементами блоков питания, так как в линиях источников питания может присутствовать опасное напряжение. Подключение, монтаж и замена деталей ППК должны проводиться при обесточенном устройстве.

3.2. Размещение и монтаж

3.2.1 Размещение

Установку ППК производит персонал специализированных организаций в соответствии с современными строительными нормами и правилами, требованиями проектной и эксплуатационной документации.

Запрещено устанавливать ППК ближе 1 м от элементов системы отопления. Необходимо принять меры по защите ППК от прямых солнечных лучей.

ППК предназначен для установки в сухих отапливаемых помещениях, отвечающим следующим требованиям:

- температура в помещении от + 5°C до + 40°C;
- относительная влажность воздуха не более 90 % при температуре + 25°С (без конденсации влаги);
- в воздухе не должно быть паров кислот и щелочей, электропроводной пыли, газов, вызывающих коррозию.

ППК закрепляется на вертикальной поверхности, на высоте, удобной для работы с клавиатурой и дисплеем ППК.

Размещение ППК должно исключать его случайное падение или перемещение по установочной поверхности, при котором возможно повреждение подключаемых проводов и кабелей.

Для выбора типа кабеля и сечения проводов необходимо пользоваться техническими характеристиками прибора и рекомендациями по монтажу прибора, приведенными ниже.

3.2.2 Монтаж

Монтаж ППК и всех соединительных линий производится в соответствии с настоящим документом, а также со схемами электрических подключений, приведенных в соответствующих эксплуатационных документах на блоки и устройства, входящие в состав АСБ «Рубикон».

Подключение экранов кабелей линий связи и питания к защитному заземлению необходимо осуществлять в одной точке.

Кабеля питания и линии связи с при монтаже – пропускаются через прорезь в основании корпуса .

Информационно-управляющая сеть ППК, СУ и АУ построена с использованием интерфейса RS-485 и адресного шлейфа. Для подключения СУ и АУ к ППК необходимо выбрать оптимальный маршрут прокладки кабеля. Стандарт RS-485 предусматривает линейную топологию линии связи, поэтому ветвления линии связи не допускаются. Однако, т.к. для связи с СУ используется относительно невысокая скорость передачи данных, то, как следствие, требования к топологии линии снижаются. Поэтому отклонения от линейной топологии возможны, но в этом случае ответственность за работоспособность линии связи несет монтажная организация, т.к. производитель оборудования может гарантировать работоспособность только в случае соблюдения спецификаций стандарта RS-485.

Структурная схема включения сетевых устройств в линию связи RS-485 показана на Рис. 4, для увеличения протяженности линии связи применяется блок ретранслятора линейный БРЛ-03 из состава прибора ППКОПУиВ 01059-1000-3 «P-08».

Согласующие резисторы 120ом (установка перемычки на конечных СУ)

ППК СУ ----- СУ ----- СУ ----- СУ -----

Рис. 4 Подключение сетевых устройств на линию RS-485.

На конечных СУ в линии необходимо установить перемычки согласующих резисторов (резисторы обычно встроены в само устройство).

Если устройства питаются от разных источников питания, помимо информационных линий (A, B) прокладывается проводник (GND, возвратный провод) для выравнивания потенциалов.

Для повышения устойчивости к электромагнитным помехам рекомендуется использовать экранированную витую пару и гальваническую развязку. Заземление экрана производить в одной точке.

Схемы включения адресных устройств в адресный шлейф показаны на Рис. 5, Рис. 6.

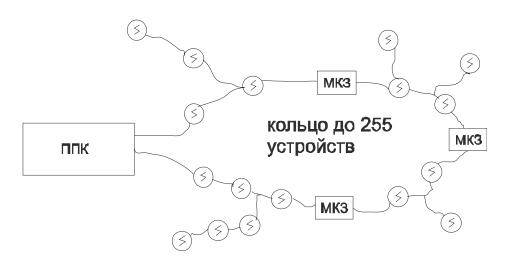


Рис. 5 Подключение адресного шлейфа в режиме «кольцо».

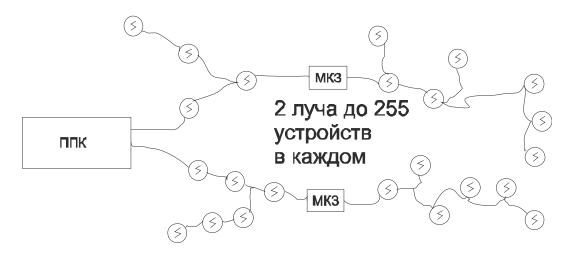


Рис. 6 Подключение адресного шлейфа в режиме «два луча».

Для увеличения количества адресных шлейфов и соответственно АУ применяется КА2 (см. Рис. 7), подключаемый к ППК по линии связи "RS-485".

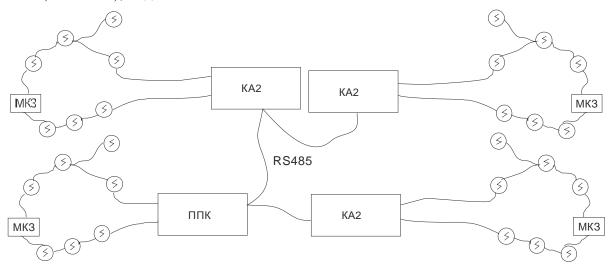


Рис. 7 Увеличение адресных устройств при помощи КА2

3.2.3 Подключение ППК

Перед началом работ по подключению следует внимательно изучить настоящее руководство по эксплуатации ППК-Е.

Перед включением ППК-Е проверить правильность произведенного монтажа, включая полярность подключения к ИБП. Назначение клемм подключения приведено Табл. 3.

Подключение ППК-Е, включая точку доступа на базе устройства типа УСК, датчика (геркона) двери, кнопки выхода и адресных устройств показано на Рис. 1, Рис. 2.

Если ППК-Е является первым или последним устройством в линии связи RS-485, перемычку JP1 (Рис. 4) согласующего сопротивления необходимо замкнуть.

Внешние соединения осуществляются через клеммники на плате.

Клеммники на плате предназначены для подключения одножильных или многожильных проводов сечением до $1,5 \,\mathrm{mm}^2$. Допускается подключение в один клеммник одновременно двух проводов сечением до $1 \,\mathrm{mm}^2$ каждый.

Назначение контактов на клеммной колодке, слева направо (см. Табл. 3):

А, В, G – клеммы подключения линии связи RS-485 и общего (возвратного) провода.

С, NC, NO – клеммы релейного выхода общего назначения.

O1, "-", O2 – клеммы подключения оповещателей. Полярность выходного сигнала на клеммах O и O2 положительная относительно клеммы "-". Клемма "-" предназначена только для подключения «-» оповещателей.

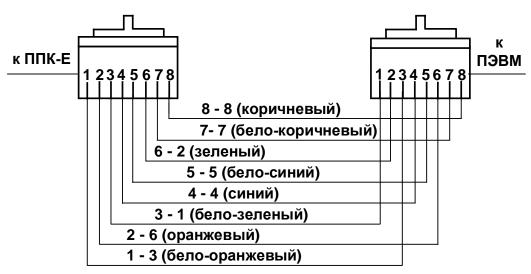
Внимание! Выходное напряжение, подаваемое на оповещатели совпадает с напряжением питания ППК! Выбирайте оповещатели соответствующего типа.

+U- – клеммы подключения питания 9 – 28 вольт.

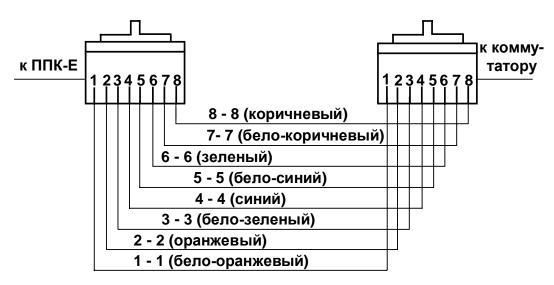
+ S1 -, + S2 - - клеммы подключения адресного шлейфа. Допускается подключение двух независимых лучей (Рис. 6), но рекомендуется использовать кольцевое включение одного шлейфа (Рис. 5).

Подключение устройств, работающих по интерфейсу RS-232 производится в соответствии с рекомендациями по подключению конкретных марок применяемых модемов или принтеров.

3.2.4 Подключение ПЭВМ


ПЭВМ (не более 1-й) подключается к ППК по линии связи с интерфейсом "RS-485" или с помощью интерфейса Ethernet.

При подключении по Ethernet необходимо задать IP-адрес, маску подсети, адрес шлюза и порт. (Настройки по умолчанию имеют следующий вид: IP-адрес: **192. 168. 0. 199**; маска подсети: **255.255.255.0**; адрес шлюза: **0.0.0**; порт: **2000**)


В качестве переходника для работы с ПЭВМ используется адаптер интерфейсов "USB/RS-485" марки "ICP I-7561" и ему подобные или адаптер "RS-232/RS-485".

Подключение ПЭВМ помощью интерфейса Ethernet показано на Рис. 8.

Разъемы RJ-45

а) Перекрестный кабель (соединение ППК-Е и ПЭВМ)

б) Прямой кабель (соединение ППК-Е и коммутатора)

Цветная маркировка проводов

дветная маркировка проводов		
Пара	1 (бело-оранжевый)	
Nº1	2 (оранжевый)	
Пара	3 (бело-зеленый)	
Nº2	6 (зеленый)	
Пара	4 (синий)	
Nº3	5 (бело-синий)	
Пара	7 (бело-коричневый)	
Nº4	8 (коричневый)	

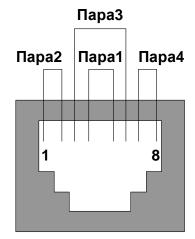


Рис. 8 Подключение ППК и ПЭВМ (Ethernet)

3.2.5 Установка внешней памяти (карта microSD)

Разъем карты памяти microSD закрыт металлической крышкой (см. Рис. 9), для установки памяти — сдвинуть и откинуть крышку, установить карту памяти, закрыть и задвинуть крышку.

Рис. 9 Установка карты памяти microSD

3.3. Конфигурирование ППК

Конфигурирование прибора возможно только с помощью $\Pi \ni BM$ - см. дополнительные инструкции на ΠO .

Подробно конфигурирование и работа с областями приведена в "ППК Рубикон. Руководство по программированию", "ППК Рубикон. Руководство пользователя" (на DVD диске).

После завершения пусконаладки рекомендуется включить режим "отображения всех неисправностей". Только в этом случае реализуются все преимущества адресноаналоговых извещателей "Рубикон".

Стирание конфигурации ППК-Е (возврат к заводским настройкам), можно посредством специальной кнопки на плате. Для этого необходимо:

- Выключите питание ППК-Е.
- Извлечь SD карту.
- Включите питание удерживая кнопку нажатой в течении ~10 секунд.

3.4. Контроль целостности проводных линий связи

3.4.1 Адресный шлейф

Кабельные линии адресного шлейфа контролируются на обрыв и короткое замыкание. При обрыве каждая часть половина шлейфа независимо контролируется на короткое замыкание.

Обрыв адресного шлейфа прибора начинает распознавать спустя 3 минуты после старта (включение питания или сброса системы). Время дается для старта модулей МКЗ.

3.4.2 Выходы на оповещатели

Кабельные линии оповещателей контролируются на обрыв и КЗ малым током (0.35мА).

Для многих оповещателей подключение дополнительных деталей обеспечивающих обнаружение короткого замыкания и обрыва не требуется (Рис. 10, схема а).

Для контроля оповещателя с низким сопротивлением (например: лампа накаливания), необходимо последовательно с ним в цепь включать диод, рассчитанный на ток не менее 100мА. Рекомендуется также включать в цепь диод, когда при нормально подключенном оповещателе прибор показывает состояние оповещателя - «короткое замыкание» (Рис. 10, схема в).

В других случаях когда прибор показывает состояние оповещателя «Обрыв» - необходимо подключить параллельно резистор 5-20ком (Рис. 10, схема б).

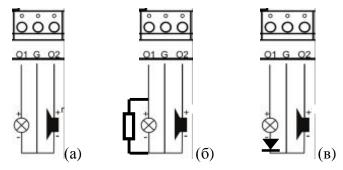


Рис. 10 Варианты подключения оповещателей

4 Маркировка

Маркировка ППК-Е соответствует конструкторской документации и техническим условиям ТУ 4372-002-72919476-2014.

На этикетке ППК-Е (на обратной стороне корпуса) нанесены:

- товарный знак предприятия изготовителя;
- условное обозначение устройства;
- исполнение;
- заводской номер;

Заводской номер – является его сетевым адресом (для ПЭВМ).

5 Упаковка

Упаковка ППК-Е соответствует ТУ 4372-002-72919476-2014.

6 Хранение

В помещениях для хранения ППК-Е не должно быть пыли, паров кислот, щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию.

Хранение ППК-Е в потребительской таре должно соответствовать условиям ГОСТ 15150.

7 Транспортирование

Транспортирование упакованных ППК-Е может производиться в любых крытых транспортных средствах. При транспортировании, перегрузке ППК-Е должны оберегаться от ударов, толчков и воздействия влаги.

Условия транспортирования и хранения должны соответствовать ГОСТ 15150.

После транспортирования ППК-Е перед включением должен быть выдержан в нормальных условиях в течение не менее 24 ч.

8 Гарантии изготовителя

Изготовитель гарантирует соответствие ППК-Е требованиям технических условий при соблюдении потребителем правил транспортирования, хранения , монтажа и эксплуатации.

Гарантийный срок эксплуатации 18 месяцев со дня ввода в эксплуатацию, но не более 24 месяцев со дня отгрузки.

9 Сведения об изготовителе

ООО «ВИКИНГ», 105173, г. Москва, ул. 9-мая, 126

тел.: (495) 542-41-70, факс: (495) 542-41-80

E-mail: общие вопросы - <u>info@sigma-is.ru</u>;

коммерческий отдел - sale@sigma-is.ru;

техническая поддержка - support@sigma-is.ru.

10 Сведения о рекламациях

При отказе ППК-Е в работе и обнаружении неисправностей должен быть составлен рекламационный акт о выявленных дефектах и неисправностях.

ППК-Е вместе с паспортом и рекламационным актом возвращается предприятию-изготовителю для ремонта или замены.

Примечание. Выход ППК-Е из строя в результате несоблюдения правил монтажа, технического обслуживания и эксплуатации не является основанием для рекламации и бесплатного ремонта.

Внимание! Претензии без паспорта ППК-Е и рекламационного акта предприятие-изготовитель не принимает.

<u>34</u> ООО «ВИКИНГ»

	" "	20 года
РЕКЛАМАЦИ	онный ак	Т
о выявленных дефек		
о выявленных дефек	лах и неисправнос	IXX
Комиссия в составе представителей ор	ганизации:	
(наименовани	е организации)	
(адрес,	телефон)	
(банковски	е реквизиты)	
Составила настоящий акт в з		монтажа / пуско-
наладки / эксплуатации (нужное подче		
(наименование	е оборудования)	
(заводской номер) (версия с		(дата изготовления)
обнаружены следующие дефек	ты и неисправности:	
Комиссия:		
Контактное лицо:	тел:	
1	E-mail:	

11 Приложение. Конструктивные особенности ППК-Е исполнение 1 (в корпусе ИБП-12)

ППК-Е конструктивно выполнен в металлическом корпусе ИБП-12. Плата ППК-Е размещена в отсеке размещения аккумуляторной батареи. Основные характеристики ИБП-12 приведены в Табл. 8. Внешний вид, габаритные и присоединительные размеры – см. Рис. 11, Рис. 12.

Подробно характеристики и работа ИБП-12 - см. "Источник вторичного электропитания ИБП-12 / ИБП-24.Руководство по эксплуатации" (НЛВТ.425513.004 РЭ).

В комплект поставки ИБП-12 входят:

- паспорт на ИБП-12;
- комплект соединительных проводов для подключения батареи аккумуляторной (БА);
- вставка плавкая 5х20 5 А (возможна замена на 6,3 А);
- вставка плавкая 5х20 2 А.

Табл. 8 Основные характеристики ИБП-12

Nº	Параметр	Значение
1	Мощность, потребляемая от сети переменного тока при максимальной нагрузке, не более, Вт	60
2	Выходное напряжение постоянного тока, В:	
	- при наличии напряжения сети переменного тока;	13,013,6
	- при пропадании напряжения сети переменного тока	11,013,5
3	Рабочий ток каждого выхода (Ивых1 или Ивых2), не	
	более, А	1,25
4	Максимальный ток заряда аккумуляторов, А	0,5
5	Количество БА (9 А час)	1
6	Номинальное напряжение аккумуляторной батареи, В	12
7	Емкость аккумуляторов, А час	9 или 7,2

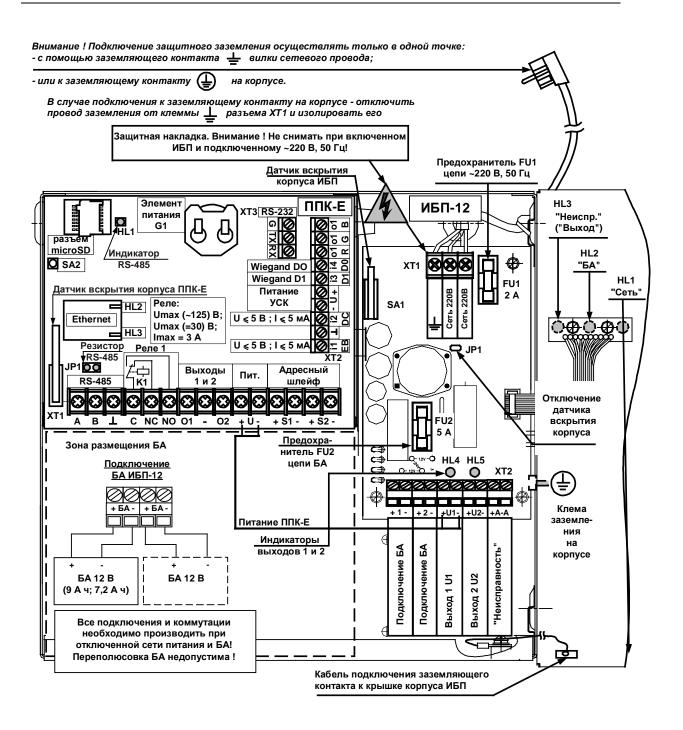


Рис. 11 Внешний вид ППК-Е (исп. 1)

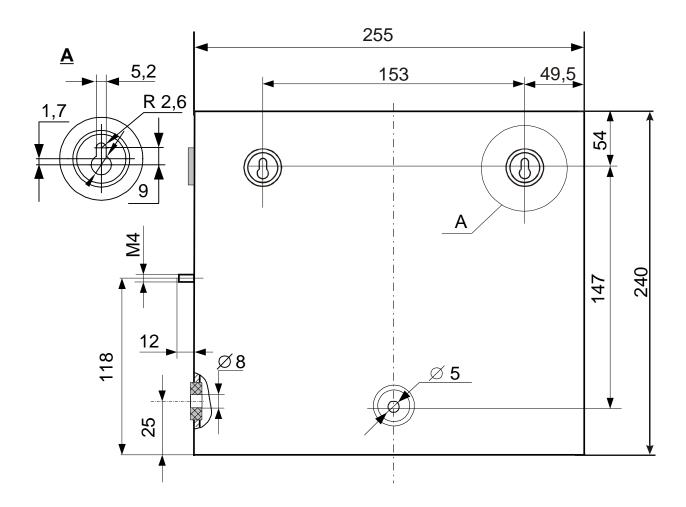


Рис. 12 Габаритные и присоединительные размеры ППК-Е (исп. 1)

12 Редакции документа

Редакция	Дата	Описание
3	14.08.2013	Добавлен вариант ППК-Е исп. 1 (в корпусе ИБП-12).
4	14.10.2014	Добавлены поддерживаемые технические устройства – см. Табл. 5, Табл. 6, Табл. 7. Изменены Сведения об изготовителе.
5	23.10.2015	Изменена конструкция КА2 исп.1, см.Приложение. Конструктивные особенности ППК-Е исполнение 1 (в корпусе ИБП-12).
6	12.01.2016	Уточнение Конфигурирование ППК.
7	17.03.2017	Уточнение характеристик Табл. 8.
8	09.06.2017	Уточнен Рис. 1.