000 "СИГМА-ИС"

Исполнительный модуль ИСМ-220

Оглавление

1	HA3	вначение	5
2	TEX	НИЧЕСКИЕ ХАРАКТЕРИСТИКИ	6
3	КОН	НСТРУКЦИЯ	7
4	КОМ	ИПЛЕКТ ПОСТАВКИ	8
5	ОПІ	ИСАНИЕ, ИНДИКАЦИЯ, МОНТАЖ, ПОДКЛЮЧЕНИЕ	8
	5.1.	Индикация, клеммы подключения	9
	5.2.	Подключение безадресных ШС	10
	5.2.1	Подключение двух извещателей с раздельной идентификацией	10
	5.2.2	Р. Подключение без контроля линии связи	11
	5.2.3 x u 6	Подключение нескольких извещателей с различением сработки 1-го и более извещателей	
	5.2.4	⁹ Одновременное подключение в один шлейф и HP и H3 извещателей	13
6	РАБ	OTA	13
	6.1.	Присвоение адреса	13
	6.2.	Настройка режима работы ШС	14
7	ПРС	ОВЕРКА РАБОТОСПОСОБНОСТИ	15
8	TEX	НИЧЕСКОЕ ОБСЛУЖИВАНИЕ	16
9	TEK	: ЗУЩИЙ РЕМОНТ	16
1	0 XI	РАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ	17
1	1 ΓΑ	АРАНТИИ ИЗГОТОВИТЕЛЯ И СВЕДЕНИЯ ОБ ИЗГОТОВИТЕЛЕ.	17
1	2 CI	ВЕДЕНИЯ О РЕКЛАМАЦИЯХ	18
1	2 DE		10

Настоящее руководство по эксплуатации (далее РЭ) распространяется на исполнительный модуль (далее ИСМ), входящий в состав адресной системы безопасности АСБ «Рубикон» (далее АСБ).

Внимание! Все работы, связанные с монтажом, наладкой и эксплуатацией настоящего устройства, должны осуществлять лица, имеющие допуск на обслуживание установок до 1000 В, прошедшие инструктаж по технике безопасности и изучившие настоящий документ.

Внимание! При подключении к шлейфу сигнализации необходимо соблюдать полярность подключения контактов. Не допускается попадание напряжения питания постоянного (переменного) тока, превышающее значение 40 В на клеммы извещателей и модуля.

В руководстве по эксплуатации приняты следующие сокращения:

АСБ адресная система безопасности

АШ адресный шлейф

АУ адресные устройства

ИСМ исполнительный модуль

КА контроллер адресного шлейфа (КА-2)

КЗ короткое замыкание

НЗ нормально-замкнутые контакты релейного вхо-

да/выхода устройства

НР нормально-разомкнутые контакты релейного вхо-

да/выхода устройства

ППК прибор приемно-контрольный

ШС шлейф сигнализации

1 Назначение

Исполнительный модуль ИСМ-220 (далее ИСМ), входящий в состав адресной системы безопасности АСБ «Рубикон», содержит один активный выход, позволяющий подключать устройства оповещения и исполнительные устройства пожарной (охранной) автоматики с напряжением питания переменного тока ~220 В, 50 Гц, а также два безадресных шлейфа сигнализации (ШС 1, 2) для подключения датчиков (извещателей) с нормально-замкнутыми (нормально-разомкнутыми) контактами (см. Рис. 1).

ИСМ-220 подключается в АШ и используются совместно с ППК "Рубикон" или КА-2 "Рубикон".

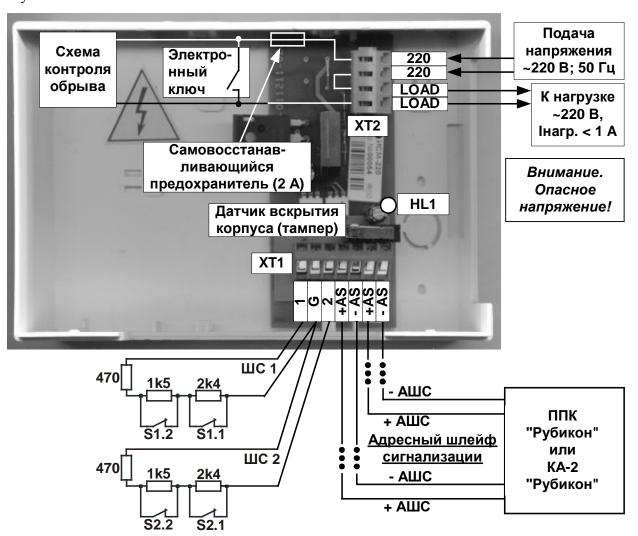


Рис. 1 Внешний вид, расположение элементов, подключение ИСМ-220

2 Технические характеристики

Табл. 1 Основные технические характеристики ИСМ-220

Nº	Параметр	Значение	Приме- чание
1	Напряжение питания (импульсное), максимальное значение, В	40	По АШ
2	Ток потребления, максимальное значение, мА	0,2	
3	Максимальное количество ИСМ в шлейфе	255 ¹	
4	Тип выхода	активный	
5	Диапазон коммутируемого напряжения переменного тока выхода, В	160260	
6	Максимальный коммутируемый ток выхода (в течении не более 1 сек), А	2	
7	Номинальный (рабочий) коммутируемый ток выхода, не более, А	1	
8	Падение напряжения на электронном реле, B, не более	2	
9	Минимальное сопротивление изоляции проводов нагрузки, кОм	100	
10	Контроль обрыва проводников нагрузки выхода в выключенном состоянии	есть	
11	Напряжение контроля нагрузки в выключенном состоянии, не более, В	260	
12	Ток контроля нагрузки в выключенном состоянии, не более, мА	0,5	
13	Контроль КЗ нагрузки выхода во включенном состоянии	есть	
14	Ограничение тока нагрузки во включенном состоянии (самовосстанавливающийся предохранитель), A, не менее	2	
15	Количество безадресных ШС	2	
16	Минимальное сопротивление изоляции проводов безадресного ШС, кОм	20	
17	Максимальное (активное) сопротивление проводов безадресного ШС, Ом	100	
18	Максимальная емкость безадресного ШС, нФ:		

 $^{^{1}}$ Для более точного расчета количества ИСМ-220 — необходимо воспользоваться калькулятором "Rubicalc".

	- в режиме удвоения;	5	
	- без удвоения	20	
19	Степень защиты от воздействия окружающей среды по ГОСТ 14254-96	IP20	
20	Диапазон рабочих температур, °С	(-10 +55)	
21	Рабочий диапазон значений относительной влажности воздуха (максимальное значение соответствует температуре +25°C, без конденсации влаги)	093%	
22	Габаритные размеры, мм, не более	170x112x35	
23	Масса, кг, не более	0,030	

3 Конструкция

Исполнительный модуль выполнен в пластмассовом разъемном корпусе (см. Рис. 1, Рис. 2) и состоит из крышки и основания корпуса . Крышка и основание корпуса соединяются с помощью выступов (защелки крепления).

На плате размещены электронные компоненты устройства, включая датчик вскрытия корпуса (микропереключатель), светодиод индикации(HL1) и клеммы подключения.

В корпусе предусмотрены два отверстия для крепления устройства шурупами к поверхности, на которой он устанавливается.

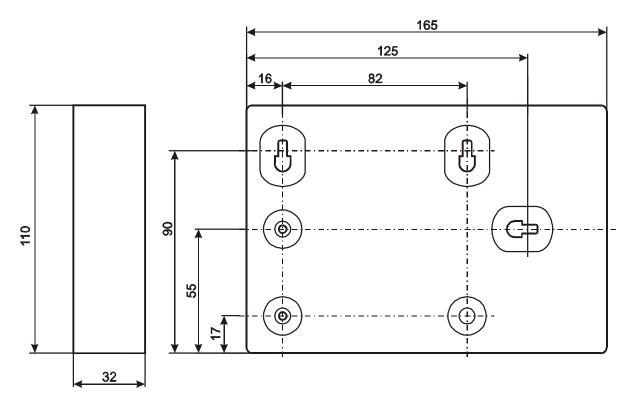


Рис. 2 Габаритные и присоединительные размеры корпуса ИСМ

4 Комплект поставки

Комплект поставки ИСМ-220 приведены соответственно в Табл. 2.

Табл. 2 Комплект поставки ИСМ-220

Обозначение	Наименование и условное обозначение	Кол. Шт/ Экз	Примечание
САКИ.425533.118	Исполнительный модуль ИСМ-220	1	
	Резистор типа C2-23-0,125 470 Ом ± 1%	2	
	Резистор типа C2-23-0,125 1,5 кОм ± 1%	4	
	Резистор типа C2-23-0,125 2,4 кОм ± 1%	4	
	Резистор типа C2-23-0,125 3.9 кОм ± 1%	4	
	Резистор типа C2-23-0,125 12 кОм ± 1%	2	
САКИ.425533.118 РЭ	АСБ "Рубикон" Исполнительный модуль ИСМ-220. Руководство по эксплуатации	1 экз	Настоящий документ, на 5 – 10 устройств
САКИ.425533.114 ПС	АСБ "Рубикон" Исполнительный модуль ИСМ-220. Паспорт	1 экз	

Резисторы могут иметь цифробуквенное обозначение номинала или цветовую маркировку (для справки ниже приведена маркировка для резисторов ряда E24 точности 1%):

Номинал	Цветные кольца, начиная от ближнего к кольцам края	
470 Ом	желтый, фиолетовый, коричневый, коричневый	
1,5 кОм	коричневый, зеленый, красный, коричневый	
2,4 кОм	красный, желтый, красный, коричневый	
3,9 кОм	Ом оранжевый, белый, красный, коричневый	
12 кОм	Ом коричневый, красный, оранжевый, коричневый	

5 Описание, индикация, монтаж, подключение

ИСМ подключаются в АШ и используются совместно с ППК "Рубикон" или КА-2 "Рубикон" в составе АСБ «Рубикон».

Все работы по монтажу и подключению необходимо проводить при обесточенных устройствах, включая ~220 В.

Внимание! Устройство содержит опасное напряжение.

Перед началом работ – должны быть проложены кабеля адресного ШС (ППК "Рубикон" или КА-2 "Рубикон"), кабель подачи ~220 В, безадресный ШС к исполнительному устройству, кабели безадресных ШС 1, 2. Подключение ИСМ-220 производится - в соответствии с Рис. 1 и Табл. 4.

Подробно схемы подключения к ШС 1,2 приведены в пп 5.2.

5.1. Индикация, клеммы подключения

Индикация HL1 приведена в Табл. 3. Назначение клемм подключения – в Табл. 4.

Табл. 3 Индикация HL1

Индикация HL1	Состояние ИСМ
"мигающее" одиночное зеленое свечение	Обмен данными по АШ
"мигающее"(~10 раз в секунду, практически <u>непрерывное</u>) красное свечение	Вскрыт корпус

Табл. 4 Назначение клемм на плате ИСМ

Обозначение		Назначение
<u>Клеммный</u>	блок XT1	
1	1	Плюсовая клемма безадресного шлейфа 1
2	G	Минусовая клемма безадресных шлейфов 1 и 2
3	2	Плюсовая клемма безадресного шлейфа 2
4	+AS	Плюсовая клемма АШ
5	-AS	Минусовая клемма АШ
6	+AS	Плюсовая клемма АШ
7	-AS	Минусовая клемма АШ
Клеммный	блок XT2	
1	LOAD	Выходная клемма ~220В; 50 Гц (подключение нагрузки – исполнительного устройства)
2	LOAD	Выходная клемма ~220В; 50 Гц (подключение нагрузки – исполнительного устройства)
3	220	Входная клемма подачи напряжения ~220В; 50 Гц

4	220	Входная клемма подачи напряжения ~220В; 50 Гц
---	-----	---

5.2. Подключение безадресных ШС

К безадресным ШС 1,2 могут быть подключены пожарные и охранные извещатели, а также технологические датчики с нормально разомкнутыми (HP) и нормально замкнутыми (H3) контактами.

Указанные извещатели должны быть нетокопотребляющими (не требующих питания по шлейфу).

ИСМ позволяет различать срабатывание 2-х извещателей в каждом шлейфе и обеспечивает контроль ШС на обрыв и короткое замыкание. На рисунках, приведенных ниже, показаны различные варианты подключения извещателей.

По умолчанию (при выпуске с производства) ИСМ-220 настроен на работу в соответствии со «Схема 1 Последовательное подключение 2-х извещателей с НЗ контактами.».

Ниже описаны другие типовые схемы подключения. Тип подключаемых устройств и способ подключения выбирается с помощью меню управления ППК «Рубикон» (см. Руководство по Эксплуатации ППК «Рубикон»). При использовании иных управляющих приборов или тонкой настройке может понадобиться ручная установка параметров режима работы ИСМ с помощью технологического меню управления, за подробностями обращайтесь к представителю производителя.

К изделию прилагаются резисторы точности 1%, хотя во всех схемах допускается использование резисторов с точностью 5% (с незначительным снижением помехоустойчивости). Многие схемы включения допускают еще более широкие пределы изменения сопротивления резисторов (см. Табл. 6 Режимы шлейфов 1,2).

5.2.1 Подключение двух извещателей с раздельной идентификацией

Возможно как последовательное параллельное (Схема 1) так и параллельное (Схема 2) подключение извещателей. Мы рекомендуем использовать параллельное подключение для нормально-разомкнутых извещателей, и последовательное для нормально-замкнутых. В противном случае возможна ложная индикация состояния тревога при повреждении шлейфа между извещателями.

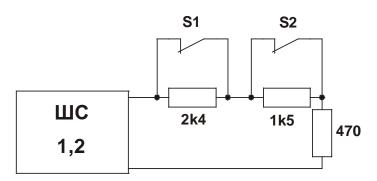


Схема 1 Последовательное подключение 2-х извещателей с НЗ контактами.

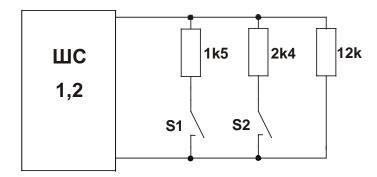


Схема 2 Параллельное подключение 2-х извещателей с НР контактами.

Для повышения устойчивости к электромагнитным помехам следует подключать только один (первый) извещатель (как указано на «Схема 3» или «Схема 4») и соответственно изменить настройки.

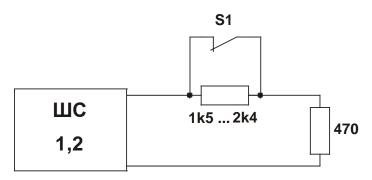


Схема 3 Последовательное подключение 1-го извещателя с Н3 контактами.

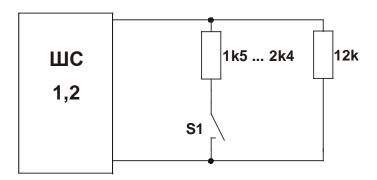


Схема 4 Параллельное подключение 1-го извещателя с НР контактами.

5.2.2 Подключение без контроля линии связи.

В случае отсутствия необходимости контроля линии связи можно исключить резисторы контроля целостности шлейфа (Схема 5, Схема 6). Такое подключение рекомендуется применять только для технологических датчиков.

Схема 5 Подключение НЗ контактов без контроля целостности линии связи.

Схема 6 Подключение НР контактов без контроля целостности линии связи.

5.2.3 Подключение нескольких извещателей с различением сработки 1-го или 2-х и более извещателей.

При необходимости подключить увеличенное количество неадресных извещателей, возможно применение схем «Схема 7» или «Схема 8». При этом система будет различать сигнал от 1 и от 2-х и более извещателей, но не будет идентифицировать конкретно сработавший извещатель. В этих схемах допускается устанавливать неограниченное количество извещателей, при условии, что суммарное сопротивление нормально замкнутых извещателей или суммарная утечка нормально разомкнутых извещателей не превышают допустимые для шлейфа значения. Однако, не рекомендуется установка более 6-ти НР извещателей или более 8-ми НЗ извещателей, поскольку при одновременной сработке большего числа извещателей возможна ложная индикация повреждения шлейфа, что затруднит техническое обслуживание системы.

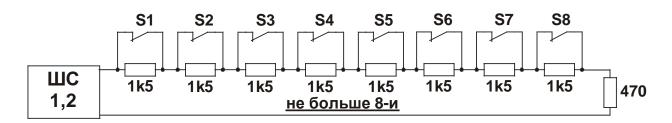


Схема 7 Последовательное подключение нескольких НЗ извещателей.

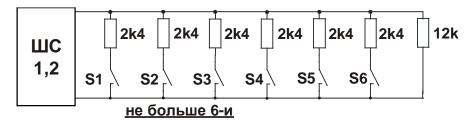


Схема 8 Параллельное подключение нескольких НР извещателей.

5.2.4 Одновременное подключение в один шлейф и HP и H3 извещателей.

При необходимости использовать в одном шлейфе (подключенные к одной паре проводов) и НЗ и НР извещатели, возможно применение схемы «Схема 9», однако при таком подключении система не сможет различить срабатывание 1-го и 2-ух извещателей. НР и НЗ извещатели будут индицироваться как разные извещатели, однако при одновременном срабатывании и НЗ и НР извещателей индицироваться будет только один из них - тот, который расположен на шлейфе ближе к ИСМ. На рисунке S1-1 имеет приоритет над S2-1, а тот, в свою очередь, над S1-2. НР и НЗ извещатели могут располагаться в любом порядке. В такой схеме допускается включение неограниченного количества как НЗ, так и НР извещателей, однако при одновременной сработке более 3-х однотипных извещателей после сброса возможна ложная индикация повреждения шлейфа, что затруднит техническое обслуживание системы.

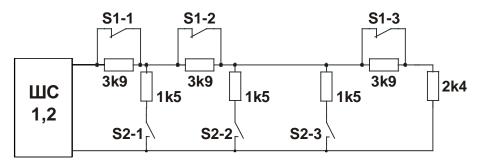


Схема 9 Параллельно-последовательное подключение и НЗ и НР извещателей.

6 Работа

После окончательного монтажа и подачи напряжения питания на устройства АСБ для использования ИСМ необходимо произвести присвоение адреса (см. пп 6.1) и настройку режима работы выхода и ШС в ППК "Рубикон" (см. Руководство по программированию ППК "Рубикон", пп 6.2).

В ИСМ для подачи питающего напряжения сети на исполнительное устройство (нагрузку используется электронное реле, которое при отключенном питании АШ находится в состоянии "закрыто". После подключения к АШ и конфигурирования системы электронное реле перейдет в состояние, соответствующее их конфигурации в ППК по мере готовности всей системы (см. РЭ ППК).

6.1. Присвоение адреса

Адрес ИСМ в АШ задается дистанционно с ППК "Рубикон" и сохраняется в энергонезависимой памяти. Рекомендуется назначать адреса согласно проекту системы. По умолчанию, при поставке ИСМ заказчику адрес соответствует 2-м последним цифрам заводского номера плюс 100. Например – зав. № 00458796 – адрес 196. Пример таблицы для №№ 00000500 – 00000599 приведен в Табл. 5.

Как видно из Табл. 5 в АШ после монтажа возможно присутствие адресных устройств с одинаковыми адресами (например, ИСМ – дублеры, зав. №№ 00000500 и 00000600). В этом случае необходимо с помощью ППК – произвести переназначение адреса одного из АУ-дублеров (например для ИСМ зав. № 00000600).

ООО «СИГМА-ИС»

Табл. 5 Пример адресов ИСМ в АШ

Заводской номер	Адрес
00000500	200
00000501	101
00000502	102
00000520	120
00000599	199
00000600	200

6.2. Настройка режима работы ШС

Для различных схем подключения шлейфов следует установить соответствующие настройки. При использовании ППК «Рубикон» для настройки параметров устройства следует применять меню выбора режима.

Возможные режимы работы (состояние ШС) приведены для ШС 1,2 в Табл. 6 (термин «тревога» в таблицах применяется для обозначения как охранного так и пожарного извещения).

Табл. 6 Режимы шлейфов 1,2

Варианты подключения	Режимы работы (состояние ШС)
Схема 1 Последовательное подключение 2-х извещателей с НЗ контактами.	К3: до 120ом Норма: 360ом0,9ком Тревога2: 1,3ком2,21ком Тревога1: 2,37 ком3,17ком Тревога1и2: 3,39ком15ком Обрыв: свыше 19 ком
Схема 2 Параллельное подключение 2-х извещателей с HP контактами.	К3: до 120ом Тревога1и2: 360ом1,03ком Тревога1: 1,17ком1,53ком Тревога2: 1,7ком3,1ком Норма: 3,7ком15ком Обрыв: свыше 19 ком
Схема 3 Последовательное подключение 1-го извещателя с НЗ контактами.	К3 : до 120ом Норма : 360ом0,9ком Тревога1 : 1,3ком15ком Обрыв : свыше 19 ком

Схема 4 Параллельное подключение 1-го извещателя с HP контактами.	К3: до 120ом Тревога1: 360ом 3,1ком Норма: 3,7ком15ком Обрыв: свыше 19 ком
Схема 7 Последовательное подключение нескольких НЗ извещателей.	К3: до 120ом Норма: 360ом0,9ком Тревога1: 1,3ком2,21ком Тревога1и2: 2,37ком15ком Обрыв: свыше 19 ком
Схема 8 Параллельное подключение нескольких НР извещателей.	К3: до 120ом Тревога1и2: 360ом1,53ком Тревога1: 1,7ком3,1ком Норма: 3,7ком15ком Обрыв: свыше 19 ком
Схема 9 Параллельно- последовательное подключение и НЗ и НР извещателей.	К3: до 120ом Тревога1: 360ом1,56ком Норма: 2,02ком2,67ком Тревога2: 3,35ком15ком Обрыв: свыше 19 ком
Схема 5 Подключение НЗ контактов без контроля целостности линии связи.	Тревога1 : более 1,3ком Норма : менее 0,9ком
Схема 6 Подключение НР контактов без контроля целостности линии связи.	Норма : более 3,7ком Тревога1 : менее 3,1ком

7 Проверка работоспособности

Подключить ИСМ-220 к ППК "Рубикон" или КА-2.

После подачи напряжения питания – произвести конфигурирование ИСМ-220 в ППК "Рубикон".

Подключить напряжение 220B и нагрузку (для проверки рекомендуется использовать лампу накаливания 220B 100 Bt).

По команде с ППК – перевести электронный ключ в состояние "замкнуто" и проверить состояние выхода.

При необходимости проведения проверки ШС 1 и 2 подключить к ним резисторы согласно Схема 1 Последовательное подключение 2-х извещателей с НЗ контактами. ,затем проверить:

- в меню «конфигурация/устройства» наличие связи с изделием (установление связи происходит не позже чем через 90 сек после включения питания);
- проконтролировать индикацию состояний при имитации сработок извещателей, а также обрыв и короткое замыкание.

Для контроля качества кабельной сети можно использовать параметры измеренного сопротивления шлейфа (технологическое меню устройства/конфигурация/опции). Обратите внимание, их необходимо контролировать в состоянии всех извещателей «норма».

Параметр	описа- ние
11	voltage 1
13	voltage 2

В случае положительного результата указанные проверки подтверждают работоспособность ИСМ. В случае обнаружения неисправностей – следует просмотреть Табл. 7 "Возможные неисправности" или обратится в службу технической поддержки - support@sigma-is.ru.

8 Техническое обслуживание

Техническое обслуживание устройств производят по планово-предупредительной системе, которая предусматривает годовое техническое обслуживание.

Работы по годовому техническому обслуживанию выполняются работником обслуживающей организации и включают:

- проверку внешнего состояния;
- проверку надежности крепления клемм, состояние внешних монтажных проводов и кабелей;
- проверку параметров линий связи АШ и линий связи релейных выходов.
- Проверку состояния исполнительных устройств и устройств оповещения.

При проверке устройств все подключения и отключения производить при отсутствии напряжения питания .

9 Текущий ремонт

Текущий ремонт осуществляется специализированными организациями по истечении гарантийного срока. Возможные неисправности, причины и указания по их устранению приведены в Табл. 7

Описание последст- вий отказов и повре- ждений	Возможные причи- ны	Указания по устранению
Отсутствует свечение индикатора	Обрыв проводов или плохой контакт в клеммах устройств	В случае необходимости затянуть соответствующие клеммные винты. Устранить обрыв кабеля.
Отсутствует напряжение питания ~220 на исполнительном устройстве (нагрузке)	Обрыв проводов или плохой контакт в клеммах устройств	В случае необходимости затянуть соответствующие клеммные винты. Устранить обрыв кабеля.
	Короткое замыкание в нагрузке. Сработал самовосстанавливающийся предохранитель	Отключить устройства. Устранить короткое замыкание и спустя ~ 5 мин. Включить.

Табл. 7 Возможные неисправности

10 Хранение и транспортирование

В помещениях для хранения устройств не должно быть повышенного содержания пыли, паров кислот, щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию.

Хранение устройств в таре должно соответствовать условиям ГОСТ 15150.

Транспортирование упакованных устройств может производиться в любых крытых транспортных средствах. При транспортировании, перегрузке устройства должны оберегаться от ударов, толчков и воздействия влаги. Условия транспортирования и хранения должны соответствовать ГОСТ 15150 при температура от -50°C до +50°C и при относительная влажности (95 \pm 3)% при +35°C.

После транспортирования устройства при отрицательной температуре перед включением они должны быть выдержаны в нормальных условиях в течение не менее 24 ч.

11 Гарантии изготовителя и сведения об изготовителе

Изготовитель гарантирует соответствие устройств требованиям технических условий ТУ 4372-007-11508121-2011 при соблюдении потребителем правил транспортирования, хранения, монтажа и эксплуатации.

Гарантийный срок эксплуатации 18 месяцев со дня ввода в эксплуатацию, но не более 24 месяцев со дня отгрузки.

ООО «СИГМА-ИС», 105173, г. Москва, ул. 9-мая, 126

тел.: (495) 542-41-70, факс: (495) 542-41-80 Е-mail: общие вопросы - <u>info@sigma-is.ru</u>; коммерческий отдел - sale@sigma-is.ru; техническая поддержка - support@sigma-is.ru.

peмонт оборудования - remont@sigma-is.ru.

http://www.sigma-is.ru

12 Сведения о рекламациях

При отказе устройств в работе и обнаружении неисправностей должен быть составлен рекламационный акт о выявленных дефектах и неисправностях.

Устройство вместе с паспортом и рекламационным актом возвращается предприятию-изготовителю для ремонта или замены.

Внимание. Механические повреждения корпусов и плат составных частей устройства приводят к нарушению гарантийных обязательств.

Примечание. Выход устройства из строя в результате несоблюдения правил монтажа, технического обслуживания и эксплуатации не является основанием для рекламации и бесплатного ремонта.

Внимание! Претензии без паспорта устройства и рекламационного акта предприятие-изготовитель не принимает.

13 Редакция документа

- Редакция	Дата	Описание
3	14.08.2013	Уточнены номиналы резисторов ШС Рис. 1.